Table of Contents for
Practical Malware Analysis

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Practical Malware Analysis by Andrew Honig Published by No Starch Press, 2012
  1. Cover
  2. Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software
  3. Praise for Practical Malware Analysis
  4. Warning
  5. About the Authors
  6. About the Technical Reviewer
  7. About the Contributing Authors
  8. Foreword
  9. Acknowledgments
  10. Individual Thanks
  11. Introduction
  12. What Is Malware Analysis?
  13. Prerequisites
  14. Practical, Hands-On Learning
  15. What’s in the Book?
  16. 0. Malware Analysis Primer
  17. The Goals of Malware Analysis
  18. Malware Analysis Techniques
  19. Types of Malware
  20. General Rules for Malware Analysis
  21. I. Basic Analysis
  22. 1. Basic Static Techniques
  23. Antivirus Scanning: A Useful First Step
  24. Hashing: A Fingerprint for Malware
  25. Finding Strings
  26. Packed and Obfuscated Malware
  27. Portable Executable File Format
  28. Linked Libraries and Functions
  29. Static Analysis in Practice
  30. The PE File Headers and Sections
  31. Conclusion
  32. Labs
  33. 2. Malware Analysis in Virtual Machines
  34. The Structure of a Virtual Machine
  35. Creating Your Malware Analysis Machine
  36. Using Your Malware Analysis Machine
  37. The Risks of Using VMware for Malware Analysis
  38. Record/Replay: Running Your Computer in Reverse
  39. Conclusion
  40. 3. Basic Dynamic Analysis
  41. Sandboxes: The Quick-and-Dirty Approach
  42. Running Malware
  43. Monitoring with Process Monitor
  44. Viewing Processes with Process Explorer
  45. Comparing Registry Snapshots with Regshot
  46. Faking a Network
  47. Packet Sniffing with Wireshark
  48. Using INetSim
  49. Basic Dynamic Tools in Practice
  50. Conclusion
  51. Labs
  52. II. Advanced Static Analysis
  53. 4. A Crash Course in x86 Disassembly
  54. Levels of Abstraction
  55. Reverse-Engineering
  56. The x86 Architecture
  57. Conclusion
  58. 5. IDA Pro
  59. Loading an Executable
  60. The IDA Pro Interface
  61. Using Cross-References
  62. Analyzing Functions
  63. Using Graphing Options
  64. Enhancing Disassembly
  65. Extending IDA with Plug-ins
  66. Conclusion
  67. Labs
  68. 6. Recognizing C Code Constructs in Assembly
  69. Global vs. Local Variables
  70. Disassembling Arithmetic Operations
  71. Recognizing if Statements
  72. Recognizing Loops
  73. Understanding Function Call Conventions
  74. Analyzing switch Statements
  75. Disassembling Arrays
  76. Identifying Structs
  77. Analyzing Linked List Traversal
  78. Conclusion
  79. Labs
  80. 7. Analyzing Malicious Windows Programs
  81. The Windows API
  82. The Windows Registry
  83. Networking APIs
  84. Following Running Malware
  85. Kernel vs. User Mode
  86. The Native API
  87. Conclusion
  88. Labs
  89. III. Advanced Dynamic Analysis
  90. 8. Debugging
  91. Source-Level vs. Assembly-Level Debuggers
  92. Kernel vs. User-Mode Debugging
  93. Using a Debugger
  94. Exceptions
  95. Modifying Execution with a Debugger
  96. Modifying Program Execution in Practice
  97. Conclusion
  98. 9. OllyDbg
  99. Loading Malware
  100. The OllyDbg Interface
  101. Memory Map
  102. Viewing Threads and Stacks
  103. Executing Code
  104. Breakpoints
  105. Loading DLLs
  106. Tracing
  107. Exception Handling
  108. Patching
  109. Analyzing Shellcode
  110. Assistance Features
  111. Plug-ins
  112. Scriptable Debugging
  113. Conclusion
  114. Labs
  115. 10. Kernel Debugging with WinDbg
  116. Drivers and Kernel Code
  117. Setting Up Kernel Debugging
  118. Using WinDbg
  119. Microsoft Symbols
  120. Kernel Debugging in Practice
  121. Rootkits
  122. Loading Drivers
  123. Kernel Issues for Windows Vista, Windows 7, and x64 Versions
  124. Conclusion
  125. Labs
  126. IV. Malware Functionality
  127. 11. Malware Behavior
  128. Downloaders and Launchers
  129. Backdoors
  130. Credential Stealers
  131. Persistence Mechanisms
  132. Privilege Escalation
  133. Covering Its Tracks—User-Mode Rootkits
  134. Conclusion
  135. Labs
  136. 12. Covert Malware Launching
  137. Launchers
  138. Process Injection
  139. Process Replacement
  140. Hook Injection
  141. Detours
  142. APC Injection
  143. Conclusion
  144. Labs
  145. 13. Data Encoding
  146. The Goal of Analyzing Encoding Algorithms
  147. Simple Ciphers
  148. Common Cryptographic Algorithms
  149. Custom Encoding
  150. Decoding
  151. Conclusion
  152. Labs
  153. 14. Malware-Focused Network Signatures
  154. Network Countermeasures
  155. Safely Investigate an Attacker Online
  156. Content-Based Network Countermeasures
  157. Combining Dynamic and Static Analysis Techniques
  158. Understanding the Attacker’s Perspective
  159. Conclusion
  160. Labs
  161. V. Anti-Reverse-Engineering
  162. 15. Anti-Disassembly
  163. Understanding Anti-Disassembly
  164. Defeating Disassembly Algorithms
  165. Anti-Disassembly Techniques
  166. Obscuring Flow Control
  167. Thwarting Stack-Frame Analysis
  168. Conclusion
  169. Labs
  170. 16. Anti-Debugging
  171. Windows Debugger Detection
  172. Identifying Debugger Behavior
  173. Interfering with Debugger Functionality
  174. Debugger Vulnerabilities
  175. Conclusion
  176. Labs
  177. 17. Anti-Virtual Machine Techniques
  178. VMware Artifacts
  179. Vulnerable Instructions
  180. Tweaking Settings
  181. Escaping the Virtual Machine
  182. Conclusion
  183. Labs
  184. 18. Packers and Unpacking
  185. Packer Anatomy
  186. Identifying Packed Programs
  187. Unpacking Options
  188. Automated Unpacking
  189. Manual Unpacking
  190. Tips and Tricks for Common Packers
  191. Analyzing Without Fully Unpacking
  192. Packed DLLs
  193. Conclusion
  194. Labs
  195. VI. Special Topics
  196. 19. Shellcode Analysis
  197. Loading Shellcode for Analysis
  198. Position-Independent Code
  199. Identifying Execution Location
  200. Manual Symbol Resolution
  201. A Full Hello World Example
  202. Shellcode Encodings
  203. NOP Sleds
  204. Finding Shellcode
  205. Conclusion
  206. Labs
  207. 20. C++ Analysis
  208. Object-Oriented Programming
  209. Virtual vs. Nonvirtual Functions
  210. Creating and Destroying Objects
  211. Conclusion
  212. Labs
  213. 21. 64-Bit Malware
  214. Why 64-Bit Malware?
  215. Differences in x64 Architecture
  216. Windows 32-Bit on Windows 64-Bit
  217. 64-Bit Hints at Malware Functionality
  218. Conclusion
  219. Labs
  220. A. Important Windows Functions
  221. B. Tools for Malware Analysis
  222. C. Solutions to Labs
  223. Lab 1-1 Solutions
  224. Lab 1-2 Solutions
  225. Lab 1-3 Solutions
  226. Lab 1-4 Solutions
  227. Lab 3-1 Solutions
  228. Lab 3-2 Solutions
  229. Lab 3-3 Solutions
  230. Lab 3-4 Solutions
  231. Lab 5-1 Solutions
  232. Lab 6-1 Solutions
  233. Lab 6-2 Solutions
  234. Lab 6-3 Solutions
  235. Lab 6-4 Solutions
  236. Lab 7-1 Solutions
  237. Lab 7-2 Solutions
  238. Lab 7-3 Solutions
  239. Lab 9-1 Solutions
  240. Lab 9-2 Solutions
  241. Lab 9-3 Solutions
  242. Lab 10-1 Solutions
  243. Lab 10-2 Solutions
  244. Lab 10-3 Solutions
  245. Lab 11-1 Solutions
  246. Lab 11-2 Solutions
  247. Lab 11-3 Solutions
  248. Lab 12-1 Solutions
  249. Lab 12-2 Solutions
  250. Lab 12-3 Solutions
  251. Lab 12-4 Solutions
  252. Lab 13-1 Solutions
  253. Lab 13-2 Solutions
  254. Lab 13-3 Solutions
  255. Lab 14-1 Solutions
  256. Lab 14-2 Solutions
  257. Lab 14-3 Solutions
  258. Lab 15-1 Solutions
  259. Lab 15-2 Solutions
  260. Lab 15-3 Solutions
  261. Lab 16-1 Solutions
  262. Lab 16-2 Solutions
  263. Lab 16-3 Solutions
  264. Lab 17-1 Solutions
  265. Lab 17-2 Solutions
  266. Lab 17-3 Solutions
  267. Lab 18-1 Solutions
  268. Lab 18-2 Solutions
  269. Lab 18-3 Solutions
  270. Lab 18-4 Solutions
  271. Lab 18-5 Solutions
  272. Lab 19-1 Solutions
  273. Lab 19-2 Solutions
  274. Lab 19-3 Solutions
  275. Lab 20-1 Solutions
  276. Lab 20-2 Solutions
  277. Lab 20-3 Solutions
  278. Lab 21-1 Solutions
  279. Lab 21-2 Solutions
  280. Index
  281. Index
  282. Index
  283. Index
  284. Index
  285. Index
  286. Index
  287. Index
  288. Index
  289. Index
  290. Index
  291. Index
  292. Index
  293. Index
  294. Index
  295. Index
  296. Index
  297. Index
  298. Index
  299. Index
  300. Index
  301. Index
  302. Index
  303. Index
  304. Index
  305. Index
  306. Index
  307. Updates
  308. About the Authors
  309. Copyright

Tips and Tricks for Common Packers

This section covers just a sampling of popular packers that you are likely to encounter when analyzing malware. For each packer covered, we’ve included a description and a strategy for unpacking manually. Automated unpackers are also listed for some of these, but they do not always work. For each packer, strategies for finding the OEP and potential complications are also included.

UPX

The most common packer used for malware is the Ultimate Packer for eXecutables (UPX). UPX is open source, free, and easy to use, and it supports a wide variety of platforms. UPX compresses the executable, and is designed for performance rather than security. UPX is popular because of its high decompression speed, and the small size and low memory requirements of its decompression routine.

UPX was not designed to be difficult to reverse-engineer, and it does not pose much of a challenge for a malware analyst. Most programs packed with UPX can be unpacked with UPX as well, and the command line has a -d option that you can use to decompress a UPX-packed executable.

Because it’s fairly easy to overcome, UPX is a good packer for learning how to manually unpack malware. However, many stealthy malicious programs are designed to appear to be packed with UPX, when they are really packed with another packer or a modified version of UPX. When this is the case, the UPX program will not be able to unpack the executable.

You can find the OEP for UPX by using many of the strategies outlined earlier in this chapter. You can also use the Find OEP by Section Hop feature in OllyDump, or simply page down through the unpacking stub until you see the tail jump. Dumping the file and reconstructing the import table with OllyDump will be successful.

PECompact

PECompact is a commercial packer designed for speed and performance. A discontinued free student version is still often used by malware authors. Programs packed with this packer can be difficult to unpack, because it includes anti-debugging exceptions and obfuscated code. PECompact has a plug-in framework that allows third-party tools to be incorporated, and malware authors often include third-party tools that make unpacking even more difficult.

Unpacking PECompact manually is largely the same as unpacking UPX. The program generates some exceptions, so you will need to have OllyDbg set to pass exceptions to the program. This was discussed in detail in Chapter 16.

You can find the OEP by looking for the tail jump. Step over a few functions, and you will see a tail jump consisting of a jmp eax followed by many 0x00 bytes.

ASPack

ASPack is focused on security, and it employs techniques to make it difficult to unpack programs. ASPack uses self-modifying code, which makes it difficult to set breakpoints and to analyze in general.

Setting a breakpoint can cause programs packed with ASPack to terminate prematurely, but these programs can still be manually unpacked using hardware breakpoints set on the stack address. Additionally, ASPack is so popular that there are many automated unpackers available. Their effectiveness varies, but automated unpacking is always worth trying as a first option.

Although you may successfully unpack an ASPack packed file using automated techniques, most likely you’ll need to unpack files manually. Begin by opening the code for the unpacking stub. Early in the code, you will see a PUSHAD instruction. Determine which stack addresses are used to store the registers, and set a hardware breakpoint on one of those addresses. Ensure that it is set to break on a read instruction. When the corresponding POPAD instruction is called, the breakpoint will be triggered and you will be just a few instructions away from the tail jump that leads to the OEP.

Petite

Petite is similar to ASPack in a number of ways. Petite also uses anti-debugging mechanisms to make it difficult to determine the OEP, and the Petite code uses single-step exceptions in order to break into the debugger. This can be resolved by passing single-step exceptions to the program, as described in Chapter 16. The best strategy is to use a hardware breakpoint on the stack to find the OEP, as with ASPack. Petite uses a complicated code structure that makes it easy to spot the OEP once you have gotten close because the original code looks normal unlike the Petite wrapper code.

Petite also keeps at least one import from each library in the original import table. Although this does not affect how difficult it is to unpack, you can easily determine which DLLs the malware uses without unpacking it.

WinUpack

WinUpack is a packer with a GUI front end, designed for optimal compression, and not for security. There is a command-line version of this packer called UPack, and there are automated unpackers specific to UPack and WinUpack.

Although security isn’t its focus, WinUpack does include security measures that make it difficult to find the OEP, and render techniques such as searching for the tail jump or using OllyDump useless. Example 18-5 shows the tail jump for this executable.

Example 18-5. Tail jump for a program packed with UPack

010103A6   POP ECX
010103A7   OR ECX,ECX
010103A9   MOV DWORD PTR SS:[EBP+3A8],EAX
010103AF   POPAD
010103B0   JNZ SHORT Sample_upac.010103BA
010103B2   MOV EAX,1
010103B7   RETN 0C
010103BA  PUSH Sample_upac.01005F85
010103BF  RETN
010103C0   MOV EAX,DWORD PTR SS:[EBP+426]
010103C6   LEA ECX,DWORD PTR SS:[EBP+43B]
010103CC   PUSH ECX
010103CD   PUSH EAX
010103CE   CALL DWORD PTR SS:[EBP+F49]
010103D4   MOV DWORD PTR SS:[EBP+555],EAX
010103DA   LEA EAX,DWORD PTR SS:[EBP+447]
010103E0   PUSH EAX
010103E1   CALL DWORD PTR SS:[EBP+F51]
010103E7   MOV DWORD PTR SS:[EBP+42A],EAX

In this listing, the tail jump at is in the middle of the unpacking stub, so it is difficult to spot. A push instruction at followed by a return instruction is extremely common for a tail jump. The code jumps all around before arriving at the tail jump in order to make it harder to spot. To further obscure the tail jump, the push that precedes the retn instruction is modified by the packer shortly before it is called. The jump is also not very far, so you can’t identify it by searching for long jumps. Because the OEP is in the same section as the unpacking stub, OllyDump cannot automatically identify the tail jump via its section-hopping method.

The best strategy for finding the OEP for a program packed with UPack is to set a breakpoint on GetProcAddress, and then single-step carefully over instructions looking for the loops that set the import resolution. If you set the breakpoints at every jmp or call instruction, you will be single-stepping forever, but if you set the breakpoints too sparsely, the program will probably miss your breakpoints and run until completion.

Do not be discouraged if the program runs to completion without hitting your breakpoints. Simply restart the application in the debugger and try again. Making mistakes is a part of the process. Eventually, you will single-step onto a ret instruction that is the tail jump.

Sometimes, recognizing the tail jump can be tricky. In this case, it jumps about 0x4000 bytes away. Most unpacking stubs are much smaller than 0x4000, and a jump of that size usually is a jump to the OEP. A good way to double-check is to examine the code around the OEP, which should look more like ordinary code compared to the unpacking stub. The unpacking stub often has many conditional jumps and returns in the middle of a function, but the code around the OEP should not have these unusual elements.

Another strategy that works on UPack is to set a breakpoint on GetModuleHandleA for GUI programs or GetCommandLineA for command-line programs. In Windows, these functions are called shortly after the OEP. Once the breakpoint is triggered, search backward through the code to find the OEP.

Sometimes WinUpack crashes OllyDbg by using a PE header that OllyDbg parses incorrectly. In Chapter 16, we showed that OllyDbg isn’t perfect and has issues parsing binaries that run just fine on Windows outside the debugger. If you encounter this problem, always try to use WinDbg before attempting to decipher PE header errors.

Themida

Themida is a very complicated packer with many features. Most of the features are anti-debugging and anti-analysis, which make it a very secure packer that’s difficult to unpack and analyze.

Themida contains features that prevent analysis with VMware, debuggers, and Process Monitor (procmon). Themida also has a kernel component, which makes it much more difficult to analyze. Code running in the kernel has very few restrictions, and analysis code generally runs in user space, and is therefore subject to more restrictions.

Because Themida includes so many features, the packed executable is unusually bulky. In addition, unlike most packers, Themida’s code continues to run the entire time that the original program is running.

Some automated tools are designed to unpack Themida files, but their success varies based on the version of Themida and the settings used when the program was packed. Themida has so many features and settings that it is impossible to find a single unpacking strategy that will always work.

If automated tools don’t work, another great strategy is to use ProcDump to dump the process from memory without debugging. ProcDump is a tool from Microsoft for dumping the contents of a Windows process. It’s designed to work with a debugger, but is not itself a debugger. The biggest advantage of ProcDump is that you can dump process memory without stopping or debugging the process, which is extremely useful for packers that have advanced anti-debugging measures. Even when you cannot debug an executable, you can use ProcDump to dump the unpacked contents while the executable is running. This process doesn’t completely restore the original executable, but it does allow you to run strings and do some analysis on the code.