Table of Contents for
Practical Malware Analysis

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Practical Malware Analysis by Andrew Honig Published by No Starch Press, 2012
  1. Cover
  2. Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software
  3. Praise for Practical Malware Analysis
  4. Warning
  5. About the Authors
  6. About the Technical Reviewer
  7. About the Contributing Authors
  8. Foreword
  9. Acknowledgments
  10. Individual Thanks
  11. Introduction
  12. What Is Malware Analysis?
  13. Prerequisites
  14. Practical, Hands-On Learning
  15. What’s in the Book?
  16. 0. Malware Analysis Primer
  17. The Goals of Malware Analysis
  18. Malware Analysis Techniques
  19. Types of Malware
  20. General Rules for Malware Analysis
  21. I. Basic Analysis
  22. 1. Basic Static Techniques
  23. Antivirus Scanning: A Useful First Step
  24. Hashing: A Fingerprint for Malware
  25. Finding Strings
  26. Packed and Obfuscated Malware
  27. Portable Executable File Format
  28. Linked Libraries and Functions
  29. Static Analysis in Practice
  30. The PE File Headers and Sections
  31. Conclusion
  32. Labs
  33. 2. Malware Analysis in Virtual Machines
  34. The Structure of a Virtual Machine
  35. Creating Your Malware Analysis Machine
  36. Using Your Malware Analysis Machine
  37. The Risks of Using VMware for Malware Analysis
  38. Record/Replay: Running Your Computer in Reverse
  39. Conclusion
  40. 3. Basic Dynamic Analysis
  41. Sandboxes: The Quick-and-Dirty Approach
  42. Running Malware
  43. Monitoring with Process Monitor
  44. Viewing Processes with Process Explorer
  45. Comparing Registry Snapshots with Regshot
  46. Faking a Network
  47. Packet Sniffing with Wireshark
  48. Using INetSim
  49. Basic Dynamic Tools in Practice
  50. Conclusion
  51. Labs
  52. II. Advanced Static Analysis
  53. 4. A Crash Course in x86 Disassembly
  54. Levels of Abstraction
  55. Reverse-Engineering
  56. The x86 Architecture
  57. Conclusion
  58. 5. IDA Pro
  59. Loading an Executable
  60. The IDA Pro Interface
  61. Using Cross-References
  62. Analyzing Functions
  63. Using Graphing Options
  64. Enhancing Disassembly
  65. Extending IDA with Plug-ins
  66. Conclusion
  67. Labs
  68. 6. Recognizing C Code Constructs in Assembly
  69. Global vs. Local Variables
  70. Disassembling Arithmetic Operations
  71. Recognizing if Statements
  72. Recognizing Loops
  73. Understanding Function Call Conventions
  74. Analyzing switch Statements
  75. Disassembling Arrays
  76. Identifying Structs
  77. Analyzing Linked List Traversal
  78. Conclusion
  79. Labs
  80. 7. Analyzing Malicious Windows Programs
  81. The Windows API
  82. The Windows Registry
  83. Networking APIs
  84. Following Running Malware
  85. Kernel vs. User Mode
  86. The Native API
  87. Conclusion
  88. Labs
  89. III. Advanced Dynamic Analysis
  90. 8. Debugging
  91. Source-Level vs. Assembly-Level Debuggers
  92. Kernel vs. User-Mode Debugging
  93. Using a Debugger
  94. Exceptions
  95. Modifying Execution with a Debugger
  96. Modifying Program Execution in Practice
  97. Conclusion
  98. 9. OllyDbg
  99. Loading Malware
  100. The OllyDbg Interface
  101. Memory Map
  102. Viewing Threads and Stacks
  103. Executing Code
  104. Breakpoints
  105. Loading DLLs
  106. Tracing
  107. Exception Handling
  108. Patching
  109. Analyzing Shellcode
  110. Assistance Features
  111. Plug-ins
  112. Scriptable Debugging
  113. Conclusion
  114. Labs
  115. 10. Kernel Debugging with WinDbg
  116. Drivers and Kernel Code
  117. Setting Up Kernel Debugging
  118. Using WinDbg
  119. Microsoft Symbols
  120. Kernel Debugging in Practice
  121. Rootkits
  122. Loading Drivers
  123. Kernel Issues for Windows Vista, Windows 7, and x64 Versions
  124. Conclusion
  125. Labs
  126. IV. Malware Functionality
  127. 11. Malware Behavior
  128. Downloaders and Launchers
  129. Backdoors
  130. Credential Stealers
  131. Persistence Mechanisms
  132. Privilege Escalation
  133. Covering Its Tracks—User-Mode Rootkits
  134. Conclusion
  135. Labs
  136. 12. Covert Malware Launching
  137. Launchers
  138. Process Injection
  139. Process Replacement
  140. Hook Injection
  141. Detours
  142. APC Injection
  143. Conclusion
  144. Labs
  145. 13. Data Encoding
  146. The Goal of Analyzing Encoding Algorithms
  147. Simple Ciphers
  148. Common Cryptographic Algorithms
  149. Custom Encoding
  150. Decoding
  151. Conclusion
  152. Labs
  153. 14. Malware-Focused Network Signatures
  154. Network Countermeasures
  155. Safely Investigate an Attacker Online
  156. Content-Based Network Countermeasures
  157. Combining Dynamic and Static Analysis Techniques
  158. Understanding the Attacker’s Perspective
  159. Conclusion
  160. Labs
  161. V. Anti-Reverse-Engineering
  162. 15. Anti-Disassembly
  163. Understanding Anti-Disassembly
  164. Defeating Disassembly Algorithms
  165. Anti-Disassembly Techniques
  166. Obscuring Flow Control
  167. Thwarting Stack-Frame Analysis
  168. Conclusion
  169. Labs
  170. 16. Anti-Debugging
  171. Windows Debugger Detection
  172. Identifying Debugger Behavior
  173. Interfering with Debugger Functionality
  174. Debugger Vulnerabilities
  175. Conclusion
  176. Labs
  177. 17. Anti-Virtual Machine Techniques
  178. VMware Artifacts
  179. Vulnerable Instructions
  180. Tweaking Settings
  181. Escaping the Virtual Machine
  182. Conclusion
  183. Labs
  184. 18. Packers and Unpacking
  185. Packer Anatomy
  186. Identifying Packed Programs
  187. Unpacking Options
  188. Automated Unpacking
  189. Manual Unpacking
  190. Tips and Tricks for Common Packers
  191. Analyzing Without Fully Unpacking
  192. Packed DLLs
  193. Conclusion
  194. Labs
  195. VI. Special Topics
  196. 19. Shellcode Analysis
  197. Loading Shellcode for Analysis
  198. Position-Independent Code
  199. Identifying Execution Location
  200. Manual Symbol Resolution
  201. A Full Hello World Example
  202. Shellcode Encodings
  203. NOP Sleds
  204. Finding Shellcode
  205. Conclusion
  206. Labs
  207. 20. C++ Analysis
  208. Object-Oriented Programming
  209. Virtual vs. Nonvirtual Functions
  210. Creating and Destroying Objects
  211. Conclusion
  212. Labs
  213. 21. 64-Bit Malware
  214. Why 64-Bit Malware?
  215. Differences in x64 Architecture
  216. Windows 32-Bit on Windows 64-Bit
  217. 64-Bit Hints at Malware Functionality
  218. Conclusion
  219. Labs
  220. A. Important Windows Functions
  221. B. Tools for Malware Analysis
  222. C. Solutions to Labs
  223. Lab 1-1 Solutions
  224. Lab 1-2 Solutions
  225. Lab 1-3 Solutions
  226. Lab 1-4 Solutions
  227. Lab 3-1 Solutions
  228. Lab 3-2 Solutions
  229. Lab 3-3 Solutions
  230. Lab 3-4 Solutions
  231. Lab 5-1 Solutions
  232. Lab 6-1 Solutions
  233. Lab 6-2 Solutions
  234. Lab 6-3 Solutions
  235. Lab 6-4 Solutions
  236. Lab 7-1 Solutions
  237. Lab 7-2 Solutions
  238. Lab 7-3 Solutions
  239. Lab 9-1 Solutions
  240. Lab 9-2 Solutions
  241. Lab 9-3 Solutions
  242. Lab 10-1 Solutions
  243. Lab 10-2 Solutions
  244. Lab 10-3 Solutions
  245. Lab 11-1 Solutions
  246. Lab 11-2 Solutions
  247. Lab 11-3 Solutions
  248. Lab 12-1 Solutions
  249. Lab 12-2 Solutions
  250. Lab 12-3 Solutions
  251. Lab 12-4 Solutions
  252. Lab 13-1 Solutions
  253. Lab 13-2 Solutions
  254. Lab 13-3 Solutions
  255. Lab 14-1 Solutions
  256. Lab 14-2 Solutions
  257. Lab 14-3 Solutions
  258. Lab 15-1 Solutions
  259. Lab 15-2 Solutions
  260. Lab 15-3 Solutions
  261. Lab 16-1 Solutions
  262. Lab 16-2 Solutions
  263. Lab 16-3 Solutions
  264. Lab 17-1 Solutions
  265. Lab 17-2 Solutions
  266. Lab 17-3 Solutions
  267. Lab 18-1 Solutions
  268. Lab 18-2 Solutions
  269. Lab 18-3 Solutions
  270. Lab 18-4 Solutions
  271. Lab 18-5 Solutions
  272. Lab 19-1 Solutions
  273. Lab 19-2 Solutions
  274. Lab 19-3 Solutions
  275. Lab 20-1 Solutions
  276. Lab 20-2 Solutions
  277. Lab 20-3 Solutions
  278. Lab 21-1 Solutions
  279. Lab 21-2 Solutions
  280. Index
  281. Index
  282. Index
  283. Index
  284. Index
  285. Index
  286. Index
  287. Index
  288. Index
  289. Index
  290. Index
  291. Index
  292. Index
  293. Index
  294. Index
  295. Index
  296. Index
  297. Index
  298. Index
  299. Index
  300. Index
  301. Index
  302. Index
  303. Index
  304. Index
  305. Index
  306. Index
  307. Updates
  308. About the Authors
  309. Copyright

Thwarting Stack-Frame Analysis

Advanced disassemblers can analyze the instructions in a function to deduce the construction of its stack frame, which allows them to display the local variables and parameters relevant to the function. This information is extremely valuable to a malware analyst, as it allows for the analysis of a single function at one time, and enables the analyst to better understand its inputs, outputs, and construction.

However, analyzing a function to determine the construction of its stack frame is not an exact science. As with many other facets of disassembly, the algorithms used to determine the construction of the stack frame must make certain assumptions and guesses that are reasonable but can usually be exploited by a knowledgeable malware author.

Defeating stack-frame analysis will also prevent the operation of certain analytical techniques, most notably the Hex-Rays Decompiler plug-in for IDA Pro, which produces C-like pseudocode for a function.

Let’s begin by examining a function that has been armored to defeat stack-frame analysis.

Example 15-1. A function that defeats stack-frame analysis

00401543     sub_401543      proc near           ; CODE XREF: sub_4012D0+3Cp
00401543                                         ; sub_401328+9Bp
00401543
00401543     arg_F4          = dword ptr  0F8h
00401543     arg_F8          = dword ptr  0FCh
00401543
00401543 000                 sub     esp, 8
00401546 008                 sub     esp, 4
00401549 00C                 cmp     esp, 1000h
0040154F 00C                 jl      short loc_401556
00401551 00C                 add     esp, 4
00401554 008                 jmp     short loc_40155C
00401556     ; --------------------------------------------------------------
00401556
00401556     loc_401556:                        ; CODE XREF: sub_401543+Cj
00401556 00C                 add     esp, 104h
0040155C
0040155C     loc_40155C:                        ; CODE XREF: sub_401543+11j
0040155C -F8                mov     [esp-0F8h+arg_F8], 1E61h
00401564 -F8                 lea     eax, [esp-0F8h+arg_F8]
00401568 -F8                 mov     [esp-0F8h+arg_F4], eax
0040156B -F8                 mov     edx, [esp-0F8h+arg_F4]
0040156E -F8                 mov     eax, [esp-0F8h+arg_F8]
00401572 -F8                 inc     eax
00401573 -F8                 mov     [edx], eax
00401575 -F8                 mov     eax, [esp-0F8h+arg_F4]
00401578 -F8                 mov     eax, [eax]
0040157A -F8                 add     esp, 8
0040157D -100                retn
0040157D     sub_401543      endp ; sp-analysis failed

Stack-frame anti-analysis techniques depend heavily on the compiler used. Of course, if the malware is entirely written in assembly, then the author is free to use more unorthodox techniques. However, if the malware is crafted with a higher-level language such as C or C++, special care must be taken to output code that can be manipulated.

In Example 15-1, the column on the far left is the standard IDA Pro line prefix, which contains the segment name and memory address for each function. The next column to the right displays the stack pointer. For each instruction, the stack pointer column shows the value of the ESP register relative to where it was at the beginning of the function. This view shows that this function is an ESP-based stack frame rather than an EBP-based one, like most functions. (This stack pointer column can be enabled in IDA Pro through the Options menu.)

At , the stack pointer begins to be shown as a negative number. This should never happen for an ordinary function because it means that this function could damage the calling function’s stack frame. In this listing, IDA Pro is also telling us that it thinks this function takes 62 arguments, of which it thinks 2 are actually being used.

Note

Press CTRL-K in IDA Pro to examine this monstrous stack frame in detail. If you attempt to press Y to give this function a prototype, you’ll be presented with one of the most ghastly abominations of a function prototype you’ve ever seen.

As you may have guessed, this function doesn’t actually take 62 arguments. In reality, it takes no arguments and has two local variables. The code responsible for breaking IDA Pro’s analysis lies near the beginning of the function, between locations 00401546 and 0040155C. It’s a simple comparison with two branches.

The ESP register is being compared against the value 0x1000. If it is less than 0x1000, then it executes the code at 00401556; otherwise, it executes the code at 00401551. Each branch adds some value to ESP—0x104 on the “less-than” branch and 4 on the “greater-than-or-equal-to” branch. From a disassembler’s perspective, there are two possible values of the stack pointer offset at this point, depending on which branch has been taken. The disassembler is forced to make a choice, and luckily for the malware author, it is tricked into making the wrong choice.

Earlier, we discussed conditional branch instructions, which were not conditional at all because they exist where the condition is constant, such as a jz instruction immediately following an xor eax, eax instruction. Innovative disassembler authors could code special semantics in their algorithm to track such guaranteed flag states and detect the presence of such fake conditional branches. The code would be useful in many scenarios and would be very straightforward, though cumbersome, to implement.

In Example 15-1, the instruction cmp esp, 1000h will always produce a fixed result. An experienced malware analyst might recognize that the lowest memory page in a Windows process would not be used as a stack, and thus this comparison is virtually guaranteed to always result in the “greater-than-or-equal-to” branch being executed. The disassembly program doesn’t have this level of intuition. Its job is to show you the instructions. It’s not designed to evaluate every decision in the code against a set of real-world scenarios.

The crux of the problem is that the disassembler assumed that the add esp, 104h instruction was valid and relevant, and adjusted its interpretation of the stack accordingly. The add esp, 4 instruction in the greater-than-or-equal-to branch was there solely to readjust the stack after the sub esp, 4 instruction that came before the comparison. The net result in real time is that the ESP value will be identical to what it was prior to the beginning of the sequence at address 00401546.

To overcome minor adjustments to the stack frame (which occur occasionally due to the inherently fallible nature of stack-frame analysis), in IDA Pro, you can put the cursor on a particular line of disassembly and press ALT-K to enter an adjustment to the stack pointer. In many cases, such as in Example 15-1, it may prove more fruitful to patch the stack-frame manipulation instructions, as in the previous examples.