Table of Contents for
Practical Malware Analysis

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Practical Malware Analysis by Andrew Honig Published by No Starch Press, 2012
  1. Cover
  2. Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software
  3. Praise for Practical Malware Analysis
  4. Warning
  5. About the Authors
  6. About the Technical Reviewer
  7. About the Contributing Authors
  8. Foreword
  9. Acknowledgments
  10. Individual Thanks
  11. Introduction
  12. What Is Malware Analysis?
  13. Prerequisites
  14. Practical, Hands-On Learning
  15. What’s in the Book?
  16. 0. Malware Analysis Primer
  17. The Goals of Malware Analysis
  18. Malware Analysis Techniques
  19. Types of Malware
  20. General Rules for Malware Analysis
  21. I. Basic Analysis
  22. 1. Basic Static Techniques
  23. Antivirus Scanning: A Useful First Step
  24. Hashing: A Fingerprint for Malware
  25. Finding Strings
  26. Packed and Obfuscated Malware
  27. Portable Executable File Format
  28. Linked Libraries and Functions
  29. Static Analysis in Practice
  30. The PE File Headers and Sections
  31. Conclusion
  32. Labs
  33. 2. Malware Analysis in Virtual Machines
  34. The Structure of a Virtual Machine
  35. Creating Your Malware Analysis Machine
  36. Using Your Malware Analysis Machine
  37. The Risks of Using VMware for Malware Analysis
  38. Record/Replay: Running Your Computer in Reverse
  39. Conclusion
  40. 3. Basic Dynamic Analysis
  41. Sandboxes: The Quick-and-Dirty Approach
  42. Running Malware
  43. Monitoring with Process Monitor
  44. Viewing Processes with Process Explorer
  45. Comparing Registry Snapshots with Regshot
  46. Faking a Network
  47. Packet Sniffing with Wireshark
  48. Using INetSim
  49. Basic Dynamic Tools in Practice
  50. Conclusion
  51. Labs
  52. II. Advanced Static Analysis
  53. 4. A Crash Course in x86 Disassembly
  54. Levels of Abstraction
  55. Reverse-Engineering
  56. The x86 Architecture
  57. Conclusion
  58. 5. IDA Pro
  59. Loading an Executable
  60. The IDA Pro Interface
  61. Using Cross-References
  62. Analyzing Functions
  63. Using Graphing Options
  64. Enhancing Disassembly
  65. Extending IDA with Plug-ins
  66. Conclusion
  67. Labs
  68. 6. Recognizing C Code Constructs in Assembly
  69. Global vs. Local Variables
  70. Disassembling Arithmetic Operations
  71. Recognizing if Statements
  72. Recognizing Loops
  73. Understanding Function Call Conventions
  74. Analyzing switch Statements
  75. Disassembling Arrays
  76. Identifying Structs
  77. Analyzing Linked List Traversal
  78. Conclusion
  79. Labs
  80. 7. Analyzing Malicious Windows Programs
  81. The Windows API
  82. The Windows Registry
  83. Networking APIs
  84. Following Running Malware
  85. Kernel vs. User Mode
  86. The Native API
  87. Conclusion
  88. Labs
  89. III. Advanced Dynamic Analysis
  90. 8. Debugging
  91. Source-Level vs. Assembly-Level Debuggers
  92. Kernel vs. User-Mode Debugging
  93. Using a Debugger
  94. Exceptions
  95. Modifying Execution with a Debugger
  96. Modifying Program Execution in Practice
  97. Conclusion
  98. 9. OllyDbg
  99. Loading Malware
  100. The OllyDbg Interface
  101. Memory Map
  102. Viewing Threads and Stacks
  103. Executing Code
  104. Breakpoints
  105. Loading DLLs
  106. Tracing
  107. Exception Handling
  108. Patching
  109. Analyzing Shellcode
  110. Assistance Features
  111. Plug-ins
  112. Scriptable Debugging
  113. Conclusion
  114. Labs
  115. 10. Kernel Debugging with WinDbg
  116. Drivers and Kernel Code
  117. Setting Up Kernel Debugging
  118. Using WinDbg
  119. Microsoft Symbols
  120. Kernel Debugging in Practice
  121. Rootkits
  122. Loading Drivers
  123. Kernel Issues for Windows Vista, Windows 7, and x64 Versions
  124. Conclusion
  125. Labs
  126. IV. Malware Functionality
  127. 11. Malware Behavior
  128. Downloaders and Launchers
  129. Backdoors
  130. Credential Stealers
  131. Persistence Mechanisms
  132. Privilege Escalation
  133. Covering Its Tracks—User-Mode Rootkits
  134. Conclusion
  135. Labs
  136. 12. Covert Malware Launching
  137. Launchers
  138. Process Injection
  139. Process Replacement
  140. Hook Injection
  141. Detours
  142. APC Injection
  143. Conclusion
  144. Labs
  145. 13. Data Encoding
  146. The Goal of Analyzing Encoding Algorithms
  147. Simple Ciphers
  148. Common Cryptographic Algorithms
  149. Custom Encoding
  150. Decoding
  151. Conclusion
  152. Labs
  153. 14. Malware-Focused Network Signatures
  154. Network Countermeasures
  155. Safely Investigate an Attacker Online
  156. Content-Based Network Countermeasures
  157. Combining Dynamic and Static Analysis Techniques
  158. Understanding the Attacker’s Perspective
  159. Conclusion
  160. Labs
  161. V. Anti-Reverse-Engineering
  162. 15. Anti-Disassembly
  163. Understanding Anti-Disassembly
  164. Defeating Disassembly Algorithms
  165. Anti-Disassembly Techniques
  166. Obscuring Flow Control
  167. Thwarting Stack-Frame Analysis
  168. Conclusion
  169. Labs
  170. 16. Anti-Debugging
  171. Windows Debugger Detection
  172. Identifying Debugger Behavior
  173. Interfering with Debugger Functionality
  174. Debugger Vulnerabilities
  175. Conclusion
  176. Labs
  177. 17. Anti-Virtual Machine Techniques
  178. VMware Artifacts
  179. Vulnerable Instructions
  180. Tweaking Settings
  181. Escaping the Virtual Machine
  182. Conclusion
  183. Labs
  184. 18. Packers and Unpacking
  185. Packer Anatomy
  186. Identifying Packed Programs
  187. Unpacking Options
  188. Automated Unpacking
  189. Manual Unpacking
  190. Tips and Tricks for Common Packers
  191. Analyzing Without Fully Unpacking
  192. Packed DLLs
  193. Conclusion
  194. Labs
  195. VI. Special Topics
  196. 19. Shellcode Analysis
  197. Loading Shellcode for Analysis
  198. Position-Independent Code
  199. Identifying Execution Location
  200. Manual Symbol Resolution
  201. A Full Hello World Example
  202. Shellcode Encodings
  203. NOP Sleds
  204. Finding Shellcode
  205. Conclusion
  206. Labs
  207. 20. C++ Analysis
  208. Object-Oriented Programming
  209. Virtual vs. Nonvirtual Functions
  210. Creating and Destroying Objects
  211. Conclusion
  212. Labs
  213. 21. 64-Bit Malware
  214. Why 64-Bit Malware?
  215. Differences in x64 Architecture
  216. Windows 32-Bit on Windows 64-Bit
  217. 64-Bit Hints at Malware Functionality
  218. Conclusion
  219. Labs
  220. A. Important Windows Functions
  221. B. Tools for Malware Analysis
  222. C. Solutions to Labs
  223. Lab 1-1 Solutions
  224. Lab 1-2 Solutions
  225. Lab 1-3 Solutions
  226. Lab 1-4 Solutions
  227. Lab 3-1 Solutions
  228. Lab 3-2 Solutions
  229. Lab 3-3 Solutions
  230. Lab 3-4 Solutions
  231. Lab 5-1 Solutions
  232. Lab 6-1 Solutions
  233. Lab 6-2 Solutions
  234. Lab 6-3 Solutions
  235. Lab 6-4 Solutions
  236. Lab 7-1 Solutions
  237. Lab 7-2 Solutions
  238. Lab 7-3 Solutions
  239. Lab 9-1 Solutions
  240. Lab 9-2 Solutions
  241. Lab 9-3 Solutions
  242. Lab 10-1 Solutions
  243. Lab 10-2 Solutions
  244. Lab 10-3 Solutions
  245. Lab 11-1 Solutions
  246. Lab 11-2 Solutions
  247. Lab 11-3 Solutions
  248. Lab 12-1 Solutions
  249. Lab 12-2 Solutions
  250. Lab 12-3 Solutions
  251. Lab 12-4 Solutions
  252. Lab 13-1 Solutions
  253. Lab 13-2 Solutions
  254. Lab 13-3 Solutions
  255. Lab 14-1 Solutions
  256. Lab 14-2 Solutions
  257. Lab 14-3 Solutions
  258. Lab 15-1 Solutions
  259. Lab 15-2 Solutions
  260. Lab 15-3 Solutions
  261. Lab 16-1 Solutions
  262. Lab 16-2 Solutions
  263. Lab 16-3 Solutions
  264. Lab 17-1 Solutions
  265. Lab 17-2 Solutions
  266. Lab 17-3 Solutions
  267. Lab 18-1 Solutions
  268. Lab 18-2 Solutions
  269. Lab 18-3 Solutions
  270. Lab 18-4 Solutions
  271. Lab 18-5 Solutions
  272. Lab 19-1 Solutions
  273. Lab 19-2 Solutions
  274. Lab 19-3 Solutions
  275. Lab 20-1 Solutions
  276. Lab 20-2 Solutions
  277. Lab 20-3 Solutions
  278. Lab 21-1 Solutions
  279. Lab 21-2 Solutions
  280. Index
  281. Index
  282. Index
  283. Index
  284. Index
  285. Index
  286. Index
  287. Index
  288. Index
  289. Index
  290. Index
  291. Index
  292. Index
  293. Index
  294. Index
  295. Index
  296. Index
  297. Index
  298. Index
  299. Index
  300. Index
  301. Index
  302. Index
  303. Index
  304. Index
  305. Index
  306. Index
  307. Updates
  308. About the Authors
  309. Copyright

Persistence Mechanisms

Once malware gains access to a system, it often looks to be there for a long time. This behavior is known as persistence. If the persistence mechanism is unique enough, it can even serve as a great way to fingerprint a given piece of malware.

In this section, we begin with a discussion of the most commonly achieved method of persistence: modification of the system’s registry. Next, we review how malware modifies files for persistence through a process known as trojanizing binaries. Finally, we discuss a method that achieves persistence without modifying the registry or files, known as DLL load-order hijacking.

The Windows Registry

When we discussed the Windows registry in Chapter 7, we noted that it is common for malware to access the registry to store configuration information, gather information about the system, and install itself persistently. You have seen in labs and throughout the book that the following registry key is a popular place for malware to install itself:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

There are many other persistence locations in the registry, but we won’t list all of them, because memorizing them and then searching for each entry manually would be tedious and inefficient. There are tools that can search for persistent registries for you, like the Autoruns program by Sysinternals, which points you to all the programs that automatically run on your system. Tools like ProcMon can monitor for registry modification while performing basic dynamic analysis.

Although we covered registry analysis earlier in the book, there are a couple popular registry entries that are worth expanding on further that we haven’t discussed yet: AppInit_DLLs, Winlogon, and SvcHost DLLs.

AppInit_DLLs

Malware authors can gain persistence for their DLLs though a special registry location called AppInit_DLL. AppInit_DLLs are loaded into every process that loads User32.dll, and a simple insertion into the registry will make AppInit_DLLs persistent.

The AppInit_DLLs value is stored in the following Windows registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows

The AppInit_DLLs value is of type REG_SZ and consists of a space-delimited string of DLLs. Most processes load User32.dll, and all of those processes also load the AppInit_DLLs. Malware authors often target individual processes, but AppInit_DLLs will be loaded into many processes. Therefore, malware authors must check to see in which process the DLL is running before executing their payload. This check is often performed in DllMain of the malicious DLL.

Winlogon Notify

Malware authors can hook malware to a particular Winlogon event, such as logon, logoff, startup, shutdown, and lock screen. This can even allow the malware to load in safe mode. The registry entry consists of the Notify value in the following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\

When winlogon.exe generates an event, Windows checks the Notify registry key for a DLL that will handle it.

SvcHost DLLs

As discussed in Chapter 7, all services persist in the registry, and if they’re removed from the registry, the service won’t start. Malware is often installed as a Windows service, but typically uses an executable. Installing malware for persistence as an svchost.exe DLL makes the malware blend into the process list and the registry better than a standard service.

Svchost.exe is a generic host process for services that run from DLLs, and Windows systems often have many instances of svchost.exe running at once. Each instance of svchost.exe contains a group of services that makes development, testing, and service group management easier. The groups are defined at the following registry location (each value represents a different group):

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost

Services are defined in the registry at the following location:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\ServiceName

Windows services contain many registry values, most of which provide information about the service, such as DisplayName and Description. Malware authors often set values that help the malware blend in, such as NetWareMan, which “Provides access to file and print resources on NetWare networks.” Another service registry value is ImagePath, which contains the location of the service executable. In the case of an svchost.exe DLL, this value contains %SystemRoot%/System32/svchost.exe –k GroupName.

All svchost.exe DLLs contain a Parameters key with a ServiceDLL value, which the malware author sets to the location of the malicious DLL. The Start value, also under the Parameters key, determines when the service is started (malware is typically set to launch during system boot).

Windows has a set number of service groups predefined, so malware will typically not create a new group, since that would be easy to detect. Instead, most malware will add itself to a preexisting group or overwrite a nonvital service—often a rarely used service from the netsvcs service group. To identify this technique, monitor the Windows registry using dynamic analysis, or look for service functions such as CreateServiceA in the disassembly. If malware is modifying these registry keys, you’ll know that it’s using this persistence technique.

Trojanized System Binaries

Another way that malware gains persistence is by trojanizing system binaries. With this technique, the malware patches bytes of a system binary to force the system to execute the malware the next time the infected binary is run or loaded. Malware authors typically target a system binary that is used frequently in normal Windows operation. DLLs are a popular target.

A system binary is typically modified by patching the entry function so that it jumps to the malicious code. The patch overwrites the very beginning of the function or some other code that is not required for the trojanized DLL to operate properly. The malicious code is added to an empty section of the binary, so that it will not impact normal operation. The inserted code typically loads malware and will function no matter where it’s inserted in the infected DLL. After the code loads the malware, it jumps back to the original DLL code, so that everything still operates as it did prior to the patch.

While examining one infected system, we noticed that the system binary rtutils.dll did not have the expected MD5 hash, so we investigated further. We loaded the suspect version of rtutils.dll, along with a clean version, into IDA Pro. The comparison between their DllEntryPoint functions is shown in Table 11-1. The difference is obvious: the trojanized version jumps to another location.

Table 11-1. rtutils.dll’s DLL Entry Point Before and After Trojanization

Original code

Trojanized code

DllEntryPoint(HINSTANCE hinstDLL,
  DWORD fdwReason, LPVOID lpReserved)

mov   edi, edi
push  ebp
mov   ebp, esp
push  ebx
mov   ebx, [ebp+8]
push  esi
mov   esi, [ebp+0Ch]
DllEntryPoint(HINSTANCE hinstDLL,
  DWORD fdwReason, LPVOID lpReserved)

jmp     DllEntryPoint_0

Example 11-5 shows the malicious code that was inserted into the infected rtutils.dll.

Example 11-5. Malicious patch of code inserted into a system DLL

76E8A660 DllEntryPoint_0
76E8A660        pusha
76E8A661        call  sub_76E8A667 
76E8A666        nop
76E8A667 sub_76E8A667
76E8A667        pop   ecx
76E8A668        mov   eax, ecx
76E8A66A        add   eax, 24h
76E8A66D        push  eax
76E8A66E        add   ecx, 0FFFF69E2h
76E8A674        mov   eax, [ecx]
76E8A677        add   eax, 0FFF00D7Bh
76E8A67C        call  eax ; LoadLibraryA
76E8A67E        popa
76E8A67F        mov   edi, edi 
76E8A681        push  ebp
76E8A682        mov   ebp, esp
76E8A684        jmp   loc_76E81BB2
...
76E8A68A        aMsconf32_dll db 'msconf32.dll',0 

As you can see, the function labeled DLLEntryPoint_0 does a pusha, which is commonly used in malicious code to save the initial state of the register so that it can do a popa to restore it when the malicious process completes. Next, the code calls sub_76E8A667 at , and the function is executed. Notice that it starts with a pop ecx, which will put the return address into the ECX register (since the pop comes immediately after a call). The code then adds 0x24 to this return address (0x76E8A666 + 0x24 = 0x76E8A68A) and pushes it on the stack. The location 0x76E8A68A contains the string 'msconf32.dll', as seen at . The call to LoadLibraryA causes the patch to load msconf32.dll. This means that msconf32.dll will be run and loaded by any process that loads rtutils.dll as a module, which includes svchost.exe, explorer.exe, and winlogon.exe.

After the call to LoadLibraryA, the patch executes the instruction popa, thus restoring the system state that was saved with the original pusha instruction. After the popa are three instructions (starting at ) that are identical to the first three instructions in the clean rtutils.dll DllEntryPoint, shown in Table 11-1. After these instructions is a jmp back to the original DllEntryPoint method.

DLL Load-Order Hijacking

DLL load-order hijacking is a simple, covert technique that allows malware authors to create persistent, malicious DLLs without the need for a registry entry or trojanized binary. This technique does not even require a separate malicious loader, as it capitalizes on the way DLLs are loaded by Windows.

The default search order for loading DLLs on Windows XP is as follows:

  1. The directory from which the application loaded

  2. The current directory

  3. The system directory (the GetSystemDirectory function is used to get the path, such as .../Windows/System32/)

  4. The 16-bit system directory (such as .../Windows/System/)

  5. The Windows directory (the GetWindowsDirectory function is used to get the path, such as .../Windows/)

  6. The directories listed in the PATH environment variable

Under Windows XP, the DLL loading process can be skipped by utilizing the KnownDLLs registry key, which contains a list of specific DLL locations, typically located in .../Windows/System32/. The KnownDLLs mechanism is designed to improve security (malicious DLLs can’t be placed higher in the load order) and speed (Windows does not need to conduct the default search in the preceding list), but it contains only a short list of the most important DLLs.

DLL load-order hijacking can be used on binaries in directories other than /System32 that load DLLs in /System32 that are not protected by KnownDLLs. For example, explorer.exe in the /Windows directory loads ntshrui.dll found in /System32. Because ntshrui.dll is not a known DLL, the default search is followed, and the /Windows directory is checked before /System32. If a malicious DLL named ntshrui.dll is placed in /Windows, it will be loaded in place of the legitimate DLL. The malicious DLL can then load the real DLL to ensure that the system continues to run properly.

Any startup binary not found in /System32 is vulnerable to this attack, and explorer.exe has roughly 50 vulnerable DLLs. Additionally, known DLLs are not fully protected due to recursive imports, and because many DLLs load other DLLs, which follow the default search order.