Table of Contents for
Practical Malware Analysis

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Practical Malware Analysis by Andrew Honig Published by No Starch Press, 2012
  1. Cover
  2. Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software
  3. Praise for Practical Malware Analysis
  4. Warning
  5. About the Authors
  6. About the Technical Reviewer
  7. About the Contributing Authors
  8. Foreword
  9. Acknowledgments
  10. Individual Thanks
  11. Introduction
  12. What Is Malware Analysis?
  13. Prerequisites
  14. Practical, Hands-On Learning
  15. What’s in the Book?
  16. 0. Malware Analysis Primer
  17. The Goals of Malware Analysis
  18. Malware Analysis Techniques
  19. Types of Malware
  20. General Rules for Malware Analysis
  21. I. Basic Analysis
  22. 1. Basic Static Techniques
  23. Antivirus Scanning: A Useful First Step
  24. Hashing: A Fingerprint for Malware
  25. Finding Strings
  26. Packed and Obfuscated Malware
  27. Portable Executable File Format
  28. Linked Libraries and Functions
  29. Static Analysis in Practice
  30. The PE File Headers and Sections
  31. Conclusion
  32. Labs
  33. 2. Malware Analysis in Virtual Machines
  34. The Structure of a Virtual Machine
  35. Creating Your Malware Analysis Machine
  36. Using Your Malware Analysis Machine
  37. The Risks of Using VMware for Malware Analysis
  38. Record/Replay: Running Your Computer in Reverse
  39. Conclusion
  40. 3. Basic Dynamic Analysis
  41. Sandboxes: The Quick-and-Dirty Approach
  42. Running Malware
  43. Monitoring with Process Monitor
  44. Viewing Processes with Process Explorer
  45. Comparing Registry Snapshots with Regshot
  46. Faking a Network
  47. Packet Sniffing with Wireshark
  48. Using INetSim
  49. Basic Dynamic Tools in Practice
  50. Conclusion
  51. Labs
  52. II. Advanced Static Analysis
  53. 4. A Crash Course in x86 Disassembly
  54. Levels of Abstraction
  55. Reverse-Engineering
  56. The x86 Architecture
  57. Conclusion
  58. 5. IDA Pro
  59. Loading an Executable
  60. The IDA Pro Interface
  61. Using Cross-References
  62. Analyzing Functions
  63. Using Graphing Options
  64. Enhancing Disassembly
  65. Extending IDA with Plug-ins
  66. Conclusion
  67. Labs
  68. 6. Recognizing C Code Constructs in Assembly
  69. Global vs. Local Variables
  70. Disassembling Arithmetic Operations
  71. Recognizing if Statements
  72. Recognizing Loops
  73. Understanding Function Call Conventions
  74. Analyzing switch Statements
  75. Disassembling Arrays
  76. Identifying Structs
  77. Analyzing Linked List Traversal
  78. Conclusion
  79. Labs
  80. 7. Analyzing Malicious Windows Programs
  81. The Windows API
  82. The Windows Registry
  83. Networking APIs
  84. Following Running Malware
  85. Kernel vs. User Mode
  86. The Native API
  87. Conclusion
  88. Labs
  89. III. Advanced Dynamic Analysis
  90. 8. Debugging
  91. Source-Level vs. Assembly-Level Debuggers
  92. Kernel vs. User-Mode Debugging
  93. Using a Debugger
  94. Exceptions
  95. Modifying Execution with a Debugger
  96. Modifying Program Execution in Practice
  97. Conclusion
  98. 9. OllyDbg
  99. Loading Malware
  100. The OllyDbg Interface
  101. Memory Map
  102. Viewing Threads and Stacks
  103. Executing Code
  104. Breakpoints
  105. Loading DLLs
  106. Tracing
  107. Exception Handling
  108. Patching
  109. Analyzing Shellcode
  110. Assistance Features
  111. Plug-ins
  112. Scriptable Debugging
  113. Conclusion
  114. Labs
  115. 10. Kernel Debugging with WinDbg
  116. Drivers and Kernel Code
  117. Setting Up Kernel Debugging
  118. Using WinDbg
  119. Microsoft Symbols
  120. Kernel Debugging in Practice
  121. Rootkits
  122. Loading Drivers
  123. Kernel Issues for Windows Vista, Windows 7, and x64 Versions
  124. Conclusion
  125. Labs
  126. IV. Malware Functionality
  127. 11. Malware Behavior
  128. Downloaders and Launchers
  129. Backdoors
  130. Credential Stealers
  131. Persistence Mechanisms
  132. Privilege Escalation
  133. Covering Its Tracks—User-Mode Rootkits
  134. Conclusion
  135. Labs
  136. 12. Covert Malware Launching
  137. Launchers
  138. Process Injection
  139. Process Replacement
  140. Hook Injection
  141. Detours
  142. APC Injection
  143. Conclusion
  144. Labs
  145. 13. Data Encoding
  146. The Goal of Analyzing Encoding Algorithms
  147. Simple Ciphers
  148. Common Cryptographic Algorithms
  149. Custom Encoding
  150. Decoding
  151. Conclusion
  152. Labs
  153. 14. Malware-Focused Network Signatures
  154. Network Countermeasures
  155. Safely Investigate an Attacker Online
  156. Content-Based Network Countermeasures
  157. Combining Dynamic and Static Analysis Techniques
  158. Understanding the Attacker’s Perspective
  159. Conclusion
  160. Labs
  161. V. Anti-Reverse-Engineering
  162. 15. Anti-Disassembly
  163. Understanding Anti-Disassembly
  164. Defeating Disassembly Algorithms
  165. Anti-Disassembly Techniques
  166. Obscuring Flow Control
  167. Thwarting Stack-Frame Analysis
  168. Conclusion
  169. Labs
  170. 16. Anti-Debugging
  171. Windows Debugger Detection
  172. Identifying Debugger Behavior
  173. Interfering with Debugger Functionality
  174. Debugger Vulnerabilities
  175. Conclusion
  176. Labs
  177. 17. Anti-Virtual Machine Techniques
  178. VMware Artifacts
  179. Vulnerable Instructions
  180. Tweaking Settings
  181. Escaping the Virtual Machine
  182. Conclusion
  183. Labs
  184. 18. Packers and Unpacking
  185. Packer Anatomy
  186. Identifying Packed Programs
  187. Unpacking Options
  188. Automated Unpacking
  189. Manual Unpacking
  190. Tips and Tricks for Common Packers
  191. Analyzing Without Fully Unpacking
  192. Packed DLLs
  193. Conclusion
  194. Labs
  195. VI. Special Topics
  196. 19. Shellcode Analysis
  197. Loading Shellcode for Analysis
  198. Position-Independent Code
  199. Identifying Execution Location
  200. Manual Symbol Resolution
  201. A Full Hello World Example
  202. Shellcode Encodings
  203. NOP Sleds
  204. Finding Shellcode
  205. Conclusion
  206. Labs
  207. 20. C++ Analysis
  208. Object-Oriented Programming
  209. Virtual vs. Nonvirtual Functions
  210. Creating and Destroying Objects
  211. Conclusion
  212. Labs
  213. 21. 64-Bit Malware
  214. Why 64-Bit Malware?
  215. Differences in x64 Architecture
  216. Windows 32-Bit on Windows 64-Bit
  217. 64-Bit Hints at Malware Functionality
  218. Conclusion
  219. Labs
  220. A. Important Windows Functions
  221. B. Tools for Malware Analysis
  222. C. Solutions to Labs
  223. Lab 1-1 Solutions
  224. Lab 1-2 Solutions
  225. Lab 1-3 Solutions
  226. Lab 1-4 Solutions
  227. Lab 3-1 Solutions
  228. Lab 3-2 Solutions
  229. Lab 3-3 Solutions
  230. Lab 3-4 Solutions
  231. Lab 5-1 Solutions
  232. Lab 6-1 Solutions
  233. Lab 6-2 Solutions
  234. Lab 6-3 Solutions
  235. Lab 6-4 Solutions
  236. Lab 7-1 Solutions
  237. Lab 7-2 Solutions
  238. Lab 7-3 Solutions
  239. Lab 9-1 Solutions
  240. Lab 9-2 Solutions
  241. Lab 9-3 Solutions
  242. Lab 10-1 Solutions
  243. Lab 10-2 Solutions
  244. Lab 10-3 Solutions
  245. Lab 11-1 Solutions
  246. Lab 11-2 Solutions
  247. Lab 11-3 Solutions
  248. Lab 12-1 Solutions
  249. Lab 12-2 Solutions
  250. Lab 12-3 Solutions
  251. Lab 12-4 Solutions
  252. Lab 13-1 Solutions
  253. Lab 13-2 Solutions
  254. Lab 13-3 Solutions
  255. Lab 14-1 Solutions
  256. Lab 14-2 Solutions
  257. Lab 14-3 Solutions
  258. Lab 15-1 Solutions
  259. Lab 15-2 Solutions
  260. Lab 15-3 Solutions
  261. Lab 16-1 Solutions
  262. Lab 16-2 Solutions
  263. Lab 16-3 Solutions
  264. Lab 17-1 Solutions
  265. Lab 17-2 Solutions
  266. Lab 17-3 Solutions
  267. Lab 18-1 Solutions
  268. Lab 18-2 Solutions
  269. Lab 18-3 Solutions
  270. Lab 18-4 Solutions
  271. Lab 18-5 Solutions
  272. Lab 19-1 Solutions
  273. Lab 19-2 Solutions
  274. Lab 19-3 Solutions
  275. Lab 20-1 Solutions
  276. Lab 20-2 Solutions
  277. Lab 20-3 Solutions
  278. Lab 21-1 Solutions
  279. Lab 21-2 Solutions
  280. Index
  281. Index
  282. Index
  283. Index
  284. Index
  285. Index
  286. Index
  287. Index
  288. Index
  289. Index
  290. Index
  291. Index
  292. Index
  293. Index
  294. Index
  295. Index
  296. Index
  297. Index
  298. Index
  299. Index
  300. Index
  301. Index
  302. Index
  303. Index
  304. Index
  305. Index
  306. Index
  307. Updates
  308. About the Authors
  309. Copyright

Static Analysis in Practice

Now that you understand the basics of static analysis, let’s examine some real malware. We’ll look at a potential keylogger and then a packed program.

PotentialKeylogger.exe: An Unpacked Executable

Table 1-2 shows an abridged list of functions imported by PotentialKeylogger.exe, as collected using Dependency Walker. Because we see so many imports, we can immediately conclude that this file is not packed.

Table 1-2. An Abridged List of DLLs and Functions Imported from PotentialKeylogger.exe

Kernel32.dll

User32.dll

User32.dll (continued)

CreateDirectoryW

BeginDeferWindowPos

ShowWindow

CreateFileW

CallNextHookEx

ToUnicodeEx

CreateThread

CreateDialogParamW

TrackPopupMenu

DeleteFileW

CreateWindowExW

TrackPopupMenuEx

ExitProcess

DefWindowProcW

TranslateMessage

FindClose

DialogBoxParamW

UnhookWindowsHookEx

FindFirstFileW

EndDialog

UnregisterClassW

FindNextFileW

GetMessageW

UnregisterHotKey

GetCommandLineW

GetSystemMetrics

 

GetCurrentProcess

GetWindowLongW

GDI32.dll

GetCurrentThread

GetWindowRect

GetStockObject

GetFileSize

GetWindowTextW

SetBkMode

GetModuleHandleW

InvalidateRect

SetTextColor

GetProcessHeap

IsDlgButtonChecked

 

GetShortPathNameW

IsWindowEnabled

Shell32.dll

HeapAlloc

LoadCursorW

CommandLineToArgvW

HeapFree

LoadIconW

SHChangeNotify

IsDebuggerPresent

LoadMenuW

SHGetFolderPathW

MapViewOfFile

MapVirtualKeyW

ShellExecuteExW

OpenProcess

MapWindowPoints

ShellExecuteW

ReadFile

MessageBoxW

 

SetFilePointer

RegisterClassExW

Advapi32.dll

WriteFile

RegisterHotKey

RegCloseKey

 

SendMessageA

RegDeleteValueW

 

SetClipboardData

RegOpenCurrentUser

 

SetDlgItemTextW

RegOpenKeyExW

 

SetWindowTextW

RegQueryValueExW

 

SetWindowsHookExW

RegSetValueExW

Like most average-sized programs, this executable contains a large number of imported functions. Unfortunately, only a small minority of those functions are particularly interesting for malware analysis. Throughout this book, we will cover the imports for malicious software, focusing on the most interesting functions from a malware analysis standpoint.

When you are not sure what a function does, you will need to look it up. To help guide your analysis, Appendix A lists many of the functions of greatest interest to malware analysts. If a function is not listed in Appendix A, search for it on MSDN online.

As a new analyst, you will spend time looking up many functions that aren’t very interesting, but you’ll quickly start to learn which functions could be important and which ones are not. For the purposes of this example, we will show you a large number of imports that are uninteresting, so you can become familiar with looking at a lot of data and focusing on some key nuggets of information.

Normally, we wouldn’t know that this malware is a potential keylogger, and we would need to look for functions that provide the clues. We will be focusing on only the functions that provide hints to the functionality of the program.

The imports from Kernel32.dll in Table 1-2 tell us that this software can open and manipulate processes (such as OpenProcess, GetCurrentProcess, and GetProcessHeap) and files (such as ReadFile, CreateFile, and WriteFile). The functions FindFirstFile and FindNextFile are particularly interesting ones that we can use to search through directories.

The imports from User32.dll are even more interesting. The large number of GUI manipulation functions (such as RegisterClassEx, SetWindowText, and ShowWindow) indicates a high likelihood that this program has a GUI (though the GUI is not necessarily displayed to the user).

The function SetWindowsHookEx is commonly used in spyware and is the most popular way that keyloggers receive keyboard inputs. This function has some legitimate uses, but if you suspect malware and you see this function, you are probably looking at keylogging functionality.

The function RegisterHotKey is also interesting. It registers a hotkey (such as CTRL-SHIFT-P) so that whenever the user presses that hotkey combination, the application is notified. No matter which application is currently active, a hotkey will bring the user to this application.

The imports from GDI32.dll are graphics-related and simply confirm that the program probably has a GUI. The imports from Shell32.dll tell us that this program can launch other programs—a feature common to both malware and legitimate programs.

The imports from Advapi32.dll tell us that this program uses the registry, which in turn tells us that we should search for strings that look like registry keys. Registry strings look a lot like directories. In this case, we found the string Software\Microsoft\Windows\CurrentVersion\Run, which is a registry key (commonly used by malware) that controls which programs are automatically run when Windows starts up.

This executable also has several exports: LowLevelKeyboardProc and Low-LevelMouseProc. Microsoft’s documentation says, “The LowLevelKeyboardProc hook procedure is an application-defined or library-defined callback function used with the SetWindowsHookEx function.” In other words, this function is used with SetWindowsHookEx to specify which function will be called when a specified event occurs—in this case, the low-level keyboard event. The documentation for SetWindowsHookEx further explains that this function will be called when certain low-level keyboard events occur.

The Microsoft documentation uses the name LowLevelKeyboardProc, and the programmer in this case did as well. We were able to get valuable information because the programmer didn’t obscure the name of an export.

Using the information gleaned from a static analysis of these imports and exports, we can draw some significant conclusions or formulate some hypotheses about this malware. For one, it seems likely that this is a local keylogger that uses SetWindowsHookEx to record keystrokes. We can also surmise that it has a GUI that is displayed only to a specific user, and that the hotkey registered with RegisterHotKey specifies the hotkey that the malicious user enters to see the keylogger GUI and access recorded keystrokes. We can further speculate from the registry function and the existence of Software\Microsoft\Windows\CurrentVersion\Run that this program sets itself to load at system startup.

PackedProgram.exe: A Dead End

Table 1-3 shows a complete list of the functions imported by a second piece of unknown malware. The brevity of this list tells us that this program is packed or obfuscated, which is further confirmed by the fact that this program has no readable strings. A Windows compiler would not create a program that imports such a small number of functions; even a Hello, World program would have more.

Table 1-3. DLLs and Functions Imported from PackedProgram.exe

Kernel32.dll

User32.dll

GetModuleHandleA

MessageBoxA

LoadLibraryA

 

GetProcAddress

 

ExitProcess

 

VirtualAlloc

 

VirtualFree

 

The fact that this program is packed is a valuable piece of information, but its packed nature also prevents us from learning anything more about the program using basic static analysis. We’ll need to try more advanced analysis techniques such as dynamic analysis (covered in Chapter 3) or unpacking (covered in Chapter 18).