Table of Contents for
Practical Malware Analysis

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Practical Malware Analysis by Andrew Honig Published by No Starch Press, 2012
  1. Cover
  2. Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software
  3. Praise for Practical Malware Analysis
  4. Warning
  5. About the Authors
  6. About the Technical Reviewer
  7. About the Contributing Authors
  8. Foreword
  9. Acknowledgments
  10. Individual Thanks
  11. Introduction
  12. What Is Malware Analysis?
  13. Prerequisites
  14. Practical, Hands-On Learning
  15. What’s in the Book?
  16. 0. Malware Analysis Primer
  17. The Goals of Malware Analysis
  18. Malware Analysis Techniques
  19. Types of Malware
  20. General Rules for Malware Analysis
  21. I. Basic Analysis
  22. 1. Basic Static Techniques
  23. Antivirus Scanning: A Useful First Step
  24. Hashing: A Fingerprint for Malware
  25. Finding Strings
  26. Packed and Obfuscated Malware
  27. Portable Executable File Format
  28. Linked Libraries and Functions
  29. Static Analysis in Practice
  30. The PE File Headers and Sections
  31. Conclusion
  32. Labs
  33. 2. Malware Analysis in Virtual Machines
  34. The Structure of a Virtual Machine
  35. Creating Your Malware Analysis Machine
  36. Using Your Malware Analysis Machine
  37. The Risks of Using VMware for Malware Analysis
  38. Record/Replay: Running Your Computer in Reverse
  39. Conclusion
  40. 3. Basic Dynamic Analysis
  41. Sandboxes: The Quick-and-Dirty Approach
  42. Running Malware
  43. Monitoring with Process Monitor
  44. Viewing Processes with Process Explorer
  45. Comparing Registry Snapshots with Regshot
  46. Faking a Network
  47. Packet Sniffing with Wireshark
  48. Using INetSim
  49. Basic Dynamic Tools in Practice
  50. Conclusion
  51. Labs
  52. II. Advanced Static Analysis
  53. 4. A Crash Course in x86 Disassembly
  54. Levels of Abstraction
  55. Reverse-Engineering
  56. The x86 Architecture
  57. Conclusion
  58. 5. IDA Pro
  59. Loading an Executable
  60. The IDA Pro Interface
  61. Using Cross-References
  62. Analyzing Functions
  63. Using Graphing Options
  64. Enhancing Disassembly
  65. Extending IDA with Plug-ins
  66. Conclusion
  67. Labs
  68. 6. Recognizing C Code Constructs in Assembly
  69. Global vs. Local Variables
  70. Disassembling Arithmetic Operations
  71. Recognizing if Statements
  72. Recognizing Loops
  73. Understanding Function Call Conventions
  74. Analyzing switch Statements
  75. Disassembling Arrays
  76. Identifying Structs
  77. Analyzing Linked List Traversal
  78. Conclusion
  79. Labs
  80. 7. Analyzing Malicious Windows Programs
  81. The Windows API
  82. The Windows Registry
  83. Networking APIs
  84. Following Running Malware
  85. Kernel vs. User Mode
  86. The Native API
  87. Conclusion
  88. Labs
  89. III. Advanced Dynamic Analysis
  90. 8. Debugging
  91. Source-Level vs. Assembly-Level Debuggers
  92. Kernel vs. User-Mode Debugging
  93. Using a Debugger
  94. Exceptions
  95. Modifying Execution with a Debugger
  96. Modifying Program Execution in Practice
  97. Conclusion
  98. 9. OllyDbg
  99. Loading Malware
  100. The OllyDbg Interface
  101. Memory Map
  102. Viewing Threads and Stacks
  103. Executing Code
  104. Breakpoints
  105. Loading DLLs
  106. Tracing
  107. Exception Handling
  108. Patching
  109. Analyzing Shellcode
  110. Assistance Features
  111. Plug-ins
  112. Scriptable Debugging
  113. Conclusion
  114. Labs
  115. 10. Kernel Debugging with WinDbg
  116. Drivers and Kernel Code
  117. Setting Up Kernel Debugging
  118. Using WinDbg
  119. Microsoft Symbols
  120. Kernel Debugging in Practice
  121. Rootkits
  122. Loading Drivers
  123. Kernel Issues for Windows Vista, Windows 7, and x64 Versions
  124. Conclusion
  125. Labs
  126. IV. Malware Functionality
  127. 11. Malware Behavior
  128. Downloaders and Launchers
  129. Backdoors
  130. Credential Stealers
  131. Persistence Mechanisms
  132. Privilege Escalation
  133. Covering Its Tracks—User-Mode Rootkits
  134. Conclusion
  135. Labs
  136. 12. Covert Malware Launching
  137. Launchers
  138. Process Injection
  139. Process Replacement
  140. Hook Injection
  141. Detours
  142. APC Injection
  143. Conclusion
  144. Labs
  145. 13. Data Encoding
  146. The Goal of Analyzing Encoding Algorithms
  147. Simple Ciphers
  148. Common Cryptographic Algorithms
  149. Custom Encoding
  150. Decoding
  151. Conclusion
  152. Labs
  153. 14. Malware-Focused Network Signatures
  154. Network Countermeasures
  155. Safely Investigate an Attacker Online
  156. Content-Based Network Countermeasures
  157. Combining Dynamic and Static Analysis Techniques
  158. Understanding the Attacker’s Perspective
  159. Conclusion
  160. Labs
  161. V. Anti-Reverse-Engineering
  162. 15. Anti-Disassembly
  163. Understanding Anti-Disassembly
  164. Defeating Disassembly Algorithms
  165. Anti-Disassembly Techniques
  166. Obscuring Flow Control
  167. Thwarting Stack-Frame Analysis
  168. Conclusion
  169. Labs
  170. 16. Anti-Debugging
  171. Windows Debugger Detection
  172. Identifying Debugger Behavior
  173. Interfering with Debugger Functionality
  174. Debugger Vulnerabilities
  175. Conclusion
  176. Labs
  177. 17. Anti-Virtual Machine Techniques
  178. VMware Artifacts
  179. Vulnerable Instructions
  180. Tweaking Settings
  181. Escaping the Virtual Machine
  182. Conclusion
  183. Labs
  184. 18. Packers and Unpacking
  185. Packer Anatomy
  186. Identifying Packed Programs
  187. Unpacking Options
  188. Automated Unpacking
  189. Manual Unpacking
  190. Tips and Tricks for Common Packers
  191. Analyzing Without Fully Unpacking
  192. Packed DLLs
  193. Conclusion
  194. Labs
  195. VI. Special Topics
  196. 19. Shellcode Analysis
  197. Loading Shellcode for Analysis
  198. Position-Independent Code
  199. Identifying Execution Location
  200. Manual Symbol Resolution
  201. A Full Hello World Example
  202. Shellcode Encodings
  203. NOP Sleds
  204. Finding Shellcode
  205. Conclusion
  206. Labs
  207. 20. C++ Analysis
  208. Object-Oriented Programming
  209. Virtual vs. Nonvirtual Functions
  210. Creating and Destroying Objects
  211. Conclusion
  212. Labs
  213. 21. 64-Bit Malware
  214. Why 64-Bit Malware?
  215. Differences in x64 Architecture
  216. Windows 32-Bit on Windows 64-Bit
  217. 64-Bit Hints at Malware Functionality
  218. Conclusion
  219. Labs
  220. A. Important Windows Functions
  221. B. Tools for Malware Analysis
  222. C. Solutions to Labs
  223. Lab 1-1 Solutions
  224. Lab 1-2 Solutions
  225. Lab 1-3 Solutions
  226. Lab 1-4 Solutions
  227. Lab 3-1 Solutions
  228. Lab 3-2 Solutions
  229. Lab 3-3 Solutions
  230. Lab 3-4 Solutions
  231. Lab 5-1 Solutions
  232. Lab 6-1 Solutions
  233. Lab 6-2 Solutions
  234. Lab 6-3 Solutions
  235. Lab 6-4 Solutions
  236. Lab 7-1 Solutions
  237. Lab 7-2 Solutions
  238. Lab 7-3 Solutions
  239. Lab 9-1 Solutions
  240. Lab 9-2 Solutions
  241. Lab 9-3 Solutions
  242. Lab 10-1 Solutions
  243. Lab 10-2 Solutions
  244. Lab 10-3 Solutions
  245. Lab 11-1 Solutions
  246. Lab 11-2 Solutions
  247. Lab 11-3 Solutions
  248. Lab 12-1 Solutions
  249. Lab 12-2 Solutions
  250. Lab 12-3 Solutions
  251. Lab 12-4 Solutions
  252. Lab 13-1 Solutions
  253. Lab 13-2 Solutions
  254. Lab 13-3 Solutions
  255. Lab 14-1 Solutions
  256. Lab 14-2 Solutions
  257. Lab 14-3 Solutions
  258. Lab 15-1 Solutions
  259. Lab 15-2 Solutions
  260. Lab 15-3 Solutions
  261. Lab 16-1 Solutions
  262. Lab 16-2 Solutions
  263. Lab 16-3 Solutions
  264. Lab 17-1 Solutions
  265. Lab 17-2 Solutions
  266. Lab 17-3 Solutions
  267. Lab 18-1 Solutions
  268. Lab 18-2 Solutions
  269. Lab 18-3 Solutions
  270. Lab 18-4 Solutions
  271. Lab 18-5 Solutions
  272. Lab 19-1 Solutions
  273. Lab 19-2 Solutions
  274. Lab 19-3 Solutions
  275. Lab 20-1 Solutions
  276. Lab 20-2 Solutions
  277. Lab 20-3 Solutions
  278. Lab 21-1 Solutions
  279. Lab 21-2 Solutions
  280. Index
  281. Index
  282. Index
  283. Index
  284. Index
  285. Index
  286. Index
  287. Index
  288. Index
  289. Index
  290. Index
  291. Index
  292. Index
  293. Index
  294. Index
  295. Index
  296. Index
  297. Index
  298. Index
  299. Index
  300. Index
  301. Index
  302. Index
  303. Index
  304. Index
  305. Index
  306. Index
  307. Updates
  308. About the Authors
  309. Copyright

Lab 3-1 Solutions

Short Answers

  1. The malware appears to be packed. The only import is ExitProcess, although the strings appear to be mostly clear and not obfuscated.

  2. The malware creates a mutex named WinVMX32, copies itself into C:\Windows\System32\vmx32to64.exe. and installs itself to run on system startup by creating the registry key HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\VideoDriver set to the copy location.

  3. The malware beacons a consistently sized 256-byte packet containing seemingly random data after resolving www.practicalmalwareanalysis.com.

Detailed Analysis

We begin with basic static analysis techniques, by looking at the malware’s PE file structure and strings. Figure C-1 shows that only kernel32.dll is imported.

PEview of Lab03-01.exe showing only one import

Figure C-1. PEview of Lab03-01.exe showing only one import

There is only one import to this binary, ExitProcess, as seen at in the import address table. Without any imports, it is tough to guess the program’s functionality. This program may be packed, since the imports will likely be resolved at runtime.

Next, we look at the strings, as shown in the following listing.

StubPath
SOFTWARE\Classes\http\shell\open\commandV
Software\Microsoft\Active Setup\Installed Components\
test
www.practicalmalwareanalysis.com
admin
VideoDriver
WinVMX32-
vmx32to64.exe
SOFTWARE\Microsoft\Windows\CurrentVersion\Run
SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders
AppData

We wouldn’t expect to see strings, since the imports led us to believe that the file is packed, but there are many interesting strings, such as registry locations and a domain name, as well as WinVMX32, VideoDriver, and vmx32to64.exe. Let’s see if basic dynamic analysis techniques will show us how these strings are used.

Before we run the malware, we run procmon and clear out all events; start Process Explorer; and set up a virtual network, including ApateDNS, Netcat (listening on ports 80 and 443), and network capturing with Wireshark.

Once we run the malware, we start examining the process in Process Explorer, as shown in Figure C-2. We begin by clicking Lab03-01.exe in the process listing and select View ▸ Lower Pane View ▸ Handles. In this view, we can see that the malware has created the mutex named WinVMX32 at . We also select View ▸ Lower Pane View ▸ DLLs and see that the malware has dynamically loaded DLLs such as ws2_32.dll and wshtcpip.dll, which means that it has networking functionality.

Process Explorer view of Lab03-01.exe showing the mutex it creates

Figure C-2. Process Explorer view of Lab03-01.exe showing the mutex it creates

Next, we use procmon to look for additional information. We bring up the Filter dialog by selecting Filter ▸ Filter, and then set three filters: one on the Process Name (to show what Lab03-01.exe does to the system), and two more on Operation, as shown in Figure C-3. We include RegSetValue and WriteFile to show changes the malware makes to the filesystem and registry.

Process Monitor Filter dialog showing filters set on Process Name and Operation

Figure C-3. Process Monitor Filter dialog showing filters set on Process Name and Operation

Having set our filters, we click Apply to see the filtered result. The entries are reduced from thousands to just the 10 seen in Figure C-4. Notice that there is only one entry for WriteFile, and there are nine entries for RegSetValue.

Procmon filtered results (with three filters set)

Figure C-4. Procmon filtered results (with three filters set)

As discussed in Chapter 3, we often need to filter out a certain amount of noise, such as entries 0 and 3 through 9 in Figure C-4. The RegSetValue on HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed is typical noise in the results because the random number generator seed is constantly updated in the registry by software.

We are left with two interesting entries, as shown in Figure C-4 at and . The first is the WriteFile operation at . Double-clicking this entry tells us that it wrote 7,168 bytes to C:\WINDOWS\system32\vmx32to64.exe, which happens to be the same size as that of the file Lab03-01.exe. Opening Windows Explorer and browsing to that location shows that this newly created file has the same MD5 hash as Lab03-01.exe, which tells us that the malware has copied itself to that name and location. This can be a useful host-based indicator for the malware because it uses a hard-coded filename.

Next, we double-click the entry at in the figure, and see that the malware wrote the following data to the registry:

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\VideoDriver:C:\WINDOWS\system32\vmx32to64.exe

This newly created registry entry is used to run vmx32to64.exe on system startup using the HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run location and creating a key named VideoDriver. We can now bring up procmon’s Filter dialog, remove the Operation filters, and slowly comb through the entries for any information we may have missed.

Next, we turn our attention to the network analysis tools we set up for basic dynamic analysis. First we check ApateDNS to see if the malware performed any DNS requests. Examining the output, we see a request for www.practicalmalwareanalysis.com, which matches the strings listing shown earlier. (To be sure that the malware has a chance to make additional DNS requests, if any, perform the analysis process a couple of times to see if the DNS request changes or use the NXDOMAIN functionality of ApateDNS.)

We complete the network analysis by examining the Netcat results, as shown in the following listing.

C:\>nc -l -p 443
\7⌠ëÅ¿A :°I,j!Yûöí?Ç:lfh↨O±ⁿ)α←εg%┬∟#xp╧O+╙3Ω☺nåiE☼?═■p}»╝/
º_∞~]ò£»ú¿¼▬F^"Äμ▒├
♦∟ªòj╡<û(y!∟♫5Z☺!♀va╪┴╗úI┤ßX╤â8╫²ñö'i¢k╢╓(√Q‼%O¶╡9.▐σÅw♀‼±Wm^┐#ñæ╬°☻/
[⌠│⌡xH╫▲É║‼
x?╦ƺ│ºLf↕x┌gYΦ<└§☻μºx)╤SBxè↕◄╟♂4AÇ

It looks like we got lucky: The malware appears to beacon out over port 443, and we were listening with Netcat over ports 80 and 443. (Use INetSim to listen on all ports at once.) We run this test several times, and the data appears to be random each time.

A follow-up in Wireshark tells us that the beacon packets are of consistent size (256 bytes) and appear to contain random data not related to the SSL protocol that normally operates over port 443.