Table of Contents for
Practical Malware Analysis

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Practical Malware Analysis by Andrew Honig Published by No Starch Press, 2012
  1. Cover
  2. Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software
  3. Praise for Practical Malware Analysis
  4. Warning
  5. About the Authors
  6. About the Technical Reviewer
  7. About the Contributing Authors
  8. Foreword
  9. Acknowledgments
  10. Individual Thanks
  11. Introduction
  12. What Is Malware Analysis?
  13. Prerequisites
  14. Practical, Hands-On Learning
  15. What’s in the Book?
  16. 0. Malware Analysis Primer
  17. The Goals of Malware Analysis
  18. Malware Analysis Techniques
  19. Types of Malware
  20. General Rules for Malware Analysis
  21. I. Basic Analysis
  22. 1. Basic Static Techniques
  23. Antivirus Scanning: A Useful First Step
  24. Hashing: A Fingerprint for Malware
  25. Finding Strings
  26. Packed and Obfuscated Malware
  27. Portable Executable File Format
  28. Linked Libraries and Functions
  29. Static Analysis in Practice
  30. The PE File Headers and Sections
  31. Conclusion
  32. Labs
  33. 2. Malware Analysis in Virtual Machines
  34. The Structure of a Virtual Machine
  35. Creating Your Malware Analysis Machine
  36. Using Your Malware Analysis Machine
  37. The Risks of Using VMware for Malware Analysis
  38. Record/Replay: Running Your Computer in Reverse
  39. Conclusion
  40. 3. Basic Dynamic Analysis
  41. Sandboxes: The Quick-and-Dirty Approach
  42. Running Malware
  43. Monitoring with Process Monitor
  44. Viewing Processes with Process Explorer
  45. Comparing Registry Snapshots with Regshot
  46. Faking a Network
  47. Packet Sniffing with Wireshark
  48. Using INetSim
  49. Basic Dynamic Tools in Practice
  50. Conclusion
  51. Labs
  52. II. Advanced Static Analysis
  53. 4. A Crash Course in x86 Disassembly
  54. Levels of Abstraction
  55. Reverse-Engineering
  56. The x86 Architecture
  57. Conclusion
  58. 5. IDA Pro
  59. Loading an Executable
  60. The IDA Pro Interface
  61. Using Cross-References
  62. Analyzing Functions
  63. Using Graphing Options
  64. Enhancing Disassembly
  65. Extending IDA with Plug-ins
  66. Conclusion
  67. Labs
  68. 6. Recognizing C Code Constructs in Assembly
  69. Global vs. Local Variables
  70. Disassembling Arithmetic Operations
  71. Recognizing if Statements
  72. Recognizing Loops
  73. Understanding Function Call Conventions
  74. Analyzing switch Statements
  75. Disassembling Arrays
  76. Identifying Structs
  77. Analyzing Linked List Traversal
  78. Conclusion
  79. Labs
  80. 7. Analyzing Malicious Windows Programs
  81. The Windows API
  82. The Windows Registry
  83. Networking APIs
  84. Following Running Malware
  85. Kernel vs. User Mode
  86. The Native API
  87. Conclusion
  88. Labs
  89. III. Advanced Dynamic Analysis
  90. 8. Debugging
  91. Source-Level vs. Assembly-Level Debuggers
  92. Kernel vs. User-Mode Debugging
  93. Using a Debugger
  94. Exceptions
  95. Modifying Execution with a Debugger
  96. Modifying Program Execution in Practice
  97. Conclusion
  98. 9. OllyDbg
  99. Loading Malware
  100. The OllyDbg Interface
  101. Memory Map
  102. Viewing Threads and Stacks
  103. Executing Code
  104. Breakpoints
  105. Loading DLLs
  106. Tracing
  107. Exception Handling
  108. Patching
  109. Analyzing Shellcode
  110. Assistance Features
  111. Plug-ins
  112. Scriptable Debugging
  113. Conclusion
  114. Labs
  115. 10. Kernel Debugging with WinDbg
  116. Drivers and Kernel Code
  117. Setting Up Kernel Debugging
  118. Using WinDbg
  119. Microsoft Symbols
  120. Kernel Debugging in Practice
  121. Rootkits
  122. Loading Drivers
  123. Kernel Issues for Windows Vista, Windows 7, and x64 Versions
  124. Conclusion
  125. Labs
  126. IV. Malware Functionality
  127. 11. Malware Behavior
  128. Downloaders and Launchers
  129. Backdoors
  130. Credential Stealers
  131. Persistence Mechanisms
  132. Privilege Escalation
  133. Covering Its Tracks—User-Mode Rootkits
  134. Conclusion
  135. Labs
  136. 12. Covert Malware Launching
  137. Launchers
  138. Process Injection
  139. Process Replacement
  140. Hook Injection
  141. Detours
  142. APC Injection
  143. Conclusion
  144. Labs
  145. 13. Data Encoding
  146. The Goal of Analyzing Encoding Algorithms
  147. Simple Ciphers
  148. Common Cryptographic Algorithms
  149. Custom Encoding
  150. Decoding
  151. Conclusion
  152. Labs
  153. 14. Malware-Focused Network Signatures
  154. Network Countermeasures
  155. Safely Investigate an Attacker Online
  156. Content-Based Network Countermeasures
  157. Combining Dynamic and Static Analysis Techniques
  158. Understanding the Attacker’s Perspective
  159. Conclusion
  160. Labs
  161. V. Anti-Reverse-Engineering
  162. 15. Anti-Disassembly
  163. Understanding Anti-Disassembly
  164. Defeating Disassembly Algorithms
  165. Anti-Disassembly Techniques
  166. Obscuring Flow Control
  167. Thwarting Stack-Frame Analysis
  168. Conclusion
  169. Labs
  170. 16. Anti-Debugging
  171. Windows Debugger Detection
  172. Identifying Debugger Behavior
  173. Interfering with Debugger Functionality
  174. Debugger Vulnerabilities
  175. Conclusion
  176. Labs
  177. 17. Anti-Virtual Machine Techniques
  178. VMware Artifacts
  179. Vulnerable Instructions
  180. Tweaking Settings
  181. Escaping the Virtual Machine
  182. Conclusion
  183. Labs
  184. 18. Packers and Unpacking
  185. Packer Anatomy
  186. Identifying Packed Programs
  187. Unpacking Options
  188. Automated Unpacking
  189. Manual Unpacking
  190. Tips and Tricks for Common Packers
  191. Analyzing Without Fully Unpacking
  192. Packed DLLs
  193. Conclusion
  194. Labs
  195. VI. Special Topics
  196. 19. Shellcode Analysis
  197. Loading Shellcode for Analysis
  198. Position-Independent Code
  199. Identifying Execution Location
  200. Manual Symbol Resolution
  201. A Full Hello World Example
  202. Shellcode Encodings
  203. NOP Sleds
  204. Finding Shellcode
  205. Conclusion
  206. Labs
  207. 20. C++ Analysis
  208. Object-Oriented Programming
  209. Virtual vs. Nonvirtual Functions
  210. Creating and Destroying Objects
  211. Conclusion
  212. Labs
  213. 21. 64-Bit Malware
  214. Why 64-Bit Malware?
  215. Differences in x64 Architecture
  216. Windows 32-Bit on Windows 64-Bit
  217. 64-Bit Hints at Malware Functionality
  218. Conclusion
  219. Labs
  220. A. Important Windows Functions
  221. B. Tools for Malware Analysis
  222. C. Solutions to Labs
  223. Lab 1-1 Solutions
  224. Lab 1-2 Solutions
  225. Lab 1-3 Solutions
  226. Lab 1-4 Solutions
  227. Lab 3-1 Solutions
  228. Lab 3-2 Solutions
  229. Lab 3-3 Solutions
  230. Lab 3-4 Solutions
  231. Lab 5-1 Solutions
  232. Lab 6-1 Solutions
  233. Lab 6-2 Solutions
  234. Lab 6-3 Solutions
  235. Lab 6-4 Solutions
  236. Lab 7-1 Solutions
  237. Lab 7-2 Solutions
  238. Lab 7-3 Solutions
  239. Lab 9-1 Solutions
  240. Lab 9-2 Solutions
  241. Lab 9-3 Solutions
  242. Lab 10-1 Solutions
  243. Lab 10-2 Solutions
  244. Lab 10-3 Solutions
  245. Lab 11-1 Solutions
  246. Lab 11-2 Solutions
  247. Lab 11-3 Solutions
  248. Lab 12-1 Solutions
  249. Lab 12-2 Solutions
  250. Lab 12-3 Solutions
  251. Lab 12-4 Solutions
  252. Lab 13-1 Solutions
  253. Lab 13-2 Solutions
  254. Lab 13-3 Solutions
  255. Lab 14-1 Solutions
  256. Lab 14-2 Solutions
  257. Lab 14-3 Solutions
  258. Lab 15-1 Solutions
  259. Lab 15-2 Solutions
  260. Lab 15-3 Solutions
  261. Lab 16-1 Solutions
  262. Lab 16-2 Solutions
  263. Lab 16-3 Solutions
  264. Lab 17-1 Solutions
  265. Lab 17-2 Solutions
  266. Lab 17-3 Solutions
  267. Lab 18-1 Solutions
  268. Lab 18-2 Solutions
  269. Lab 18-3 Solutions
  270. Lab 18-4 Solutions
  271. Lab 18-5 Solutions
  272. Lab 19-1 Solutions
  273. Lab 19-2 Solutions
  274. Lab 19-3 Solutions
  275. Lab 20-1 Solutions
  276. Lab 20-2 Solutions
  277. Lab 20-3 Solutions
  278. Lab 21-1 Solutions
  279. Lab 21-2 Solutions
  280. Index
  281. Index
  282. Index
  283. Index
  284. Index
  285. Index
  286. Index
  287. Index
  288. Index
  289. Index
  290. Index
  291. Index
  292. Index
  293. Index
  294. Index
  295. Index
  296. Index
  297. Index
  298. Index
  299. Index
  300. Index
  301. Index
  302. Index
  303. Index
  304. Index
  305. Index
  306. Index
  307. Updates
  308. About the Authors
  309. Copyright

Lab 9-3 Solutions

Short Answers

  1. The import table contains kernel32.dll, NetAPI32.dll, DLL1.dll, and DLL2.dll. The malware dynamically loads user32.dll and DLL3.dll.

  2. All three DLLs request the same base address: 0x10000000.

  3. DLL1.dll is loaded at 0x10000000, DLL2.dll is loaded at 0x320000, and DLL3.dll is loaded at 0x380000 (this may be slightly different on your machine).

  4. DLL1Print is called, and it prints “DLL 1 mystery data,” followed by the contents of a global variable.

  5. DLL2ReturnJ returns a filename of temp.txt which is passed to the call to WriteFile.

  6. Lab09-03.exe gets the buffer for the call to NetScheduleJobAdd from DLL3GetStructure, which it dynamically resolves.

  7. Mystery data 1 is the current process identifier, mystery data 2 is the handle to the open temp.txt file, and mystery data 3 is the location in memory of the string ping www.malwareanalysisbook.com.

  8. Select Manual Load when loading the DLL with IDA Pro, and then type the new image base address when prompted. In this case, the address is 0x320000.

Detailed Analysis

We start by examining the import table of Lab09-03.exe and it contains kernel32.dll, NetAPI32.dll, DLL1.dll, and DLL2.dll. Next, we load Lab09-03.exe into IDA Pro. We look for calls to LoadLibrary and check which strings are pushed on the stack before the call. We see two cross-references to LoadLibrary that push user32.dll and DLL3.dll respectively, so that these DLLs may be loaded dynamically during runtime.

We can check the base address requested by the DLLs by using PEview, as shown in Figure C-30. After loading DLL1.dll into PEview, click the IMAGE_OPTIONAL_HEADER and look at the value of Image Base, as shown at in the figure. We repeat this process with DLL2.dll and DLL3.dll, and see that they all request a base address of 0x10000000.

Finding the requested base address with PEview

Figure C-30. Finding the requested base address with PEview

Using the Memory Map to Locate DLLs

Next, we want to figure out at which memory address the three DLLs are loaded during runtime. DLL1.dll and DLL2.dll are loaded immediately because they’re in the import table. Since DLL3.dll is loaded dynamically, we will need to run the LoadLibrary function located at 0x401041. We can do this by loading Lab09-03.exe into OllyDbg, setting a breakpoint at 0x401041, and clicking play. Once the breakpoint hits, we can step over the call to LoadLibrary. At this point, all three DLLs are loaded into Lab09-03.exe.

We bring up the memory map by selecting View ▸ Memory. The memory map is shown in Figure C-31 (it may appear slightly different on your machine). At , we see that DLL1.dll gets its preferred base address of 0x10000000. At , we see that DLL2.dll didn’t get its preferred base address because DLL1.dll was already loaded at that location, so DLL2.dll is loaded at 0x320000. Finally, at , we see that DLL3.dll is loaded at 0x380000.

Using the OllyDbg memory map to examine DLL load locations

Figure C-31. Using the OllyDbg memory map to examine DLL load locations

Example C-19 shows the calls to the exports of DLL1.dll and DLL2.dll.

Example C-19. Calls to the exports of DLL1.dll and DLL2.dll from Lab09-03.exe

00401006         call    ds:DLL1Print
0040100C         call    ds:DLL2Print
00401012         call    ds:DLL2ReturnJ
00401018         mov     [ebp+hObject], eax 
0040101B         push    0                       ; lpOverlapped
0040101D         lea     eax, [ebp+NumberOfBytesWritten]
00401020         push    eax                     ; lpNumberOfBytesWritten
00401021         push    17h                     ; nNumberOfBytesToWrite
00401023         push    offset aMalwareanalysi  ; "malwareanalysisbook.com"
00401028         mov     ecx, [ebp+hObject]
0040102B         push    ecx                    ; hFile
0040102C         call    ds:WriteFile

At the start of Example C-19, we see a call to DLL1Print, which is an export of DLL1.dll. We disassemble DLL1.dll with IDA Pro and see that the function prints “DLL 1 mystery data,” followed by the contents of a global variable, dword_10008030. If we examine the cross-references to dword_10008030, we see that it is accessed in DllMain when the return value from the call GetCurrentProcessId is moved into it. Therefore, we can conclude that DLL1Print prints the current process ID, which it determines when the DLL is first loaded into the process.

In Example C-19, we see calls to two exports from DLL2.dll: DLL2Print and DLL2ReturnJ. We can disassemble DLL2.dll with IDA Pro and examine DLL2Print to see that it prints “DLL 2 mystery data,” followed by the contents of a global variable, dword_1000B078. If we examine the cross-references to dword_1000B078, we see that it is accessed in DllMain when the handle to CreateFileA is moved into it. The CreateFileA function opens a file handle to temp.txt, which the function creates if it doesn’t already exist. DLL2Print apparently prints the value of the handle for temp.txt. We can look at the DLL2ReturnJ export and find that it returns the same handle that DLL2Print prints. Further in Example C-19, at , the handle is moved into hObject, which is passed to WriteFile at defining where malwareanalysisbook.com is written.

After the WriteFile in Lab09-03.exe, DLL3.dll is loaded with a call to LoadLibrary, followed by the dynamic resolution of DLL3Print and DLL3GetStructure using GetProcAddress. First, it calls DLL3Print, which prints “DLL 3 mystery data,” followed by the contents of a global variable found at 0x1000B0C0. When we check the cross-references for the global variable, we see that it is initialized in DllMain to the string ping www.malwareanalysisbook.com, so the memory location of the string will again be printed. DLL3GetStructure appears to return a pointer to the global dword_1000B0A0, but it is unclear what data is in that location. DllMain appears to initialize some sort of structure at this location using data and the string. Since DLL3GetStructure sets a pointer to this structure, we will need to see how Lab09-03.exe uses the data to figure out the contents of the structure. Example C-20 shows the call to DLL3GetStructure at .

Example C-20. Calls to DLL3GetStructure followed by NetScheduleJobAdd in Lab09-03.exe

00401071         lea     edx, [ebp+Buffer]
00401074         push    edx
00401075         call    [ebp+var_10]           ; DLL3GetStructure
00401078         add     esp, 4
0040107B         lea     eax, [ebp+JobId]
0040107E         push    eax                     ; JobId
0040107F         mov     ecx, [ebp+Buffer]
00401082         push    ecx                     ; Buffer
00401083         push    0                       ; Servername
00401085         call    NetScheduleJobAdd

It appears that the result of that call is the structure pointed to by Buffer, which is subsequently passed to NetScheduleJobAdd. Viewing the MSDN page for NetScheduleJobAdd tells us that Buffer is a pointer to an AT_INFO structure.

Applying a Structure in IDA Pro

The AT_INFO structure can be applied to the data in DLL3.dll. First, load DLL3.dll into IDA Pro, press the INSERT key within the Structures window, and add the standard structure AT_INFO. Next, go to dword_1000B0A0 in memory and select Edit ▸ Struct Var and click AT_INFO. This will cause the data to be more readable, as shown in Example C-21. We can see that the scheduled job will be set to ping malwareanalysisbook.com every day of the week at 1:00 AM.

Example C-21. AT_INFO Structure

10001022         mov     stru_1000B0A0.Command, offset WideCharStr ; "ping www..."
1000102C         mov     stru_1000B0A0.JobTime, 36EE80h
10001036         mov     stru_1000B0A0.DaysOfMonth, 0
10001040         mov     stru_1000B0A0.DaysOfWeek, 7Fh
10001047         mov     stru_1000B0A0.Flags, 11h

Specifying a New Image Base with IDA Pro

We can load DLL2.dll into IDA Pro in a different location by checking the Manual Load box when loading the DLL. In the field that says Please specify the new image base, we type 320000. IDA Pro will do the rest to adjust all of the offsets, just as OllyDbg did when loading the DLL.

Malware Summary

This lab demonstrated how to determine where three DLLs are loaded into Lab09-03.exe using OllyDbg. We loaded these DLLs into IDA Pro to perform full analysis, and then figured out the mystery data printed by the malware: mystery data 1 is the current process identifier, mystery data 2 is the handle to the open temp.txt, and mystery data 3 is the location in memory of the string ping www.malwareanalysisbook.com. Finally, we applied the Windows AT_INFO structure within IDA Pro to aid our analysis of DLL3.dll.