Table of Contents for
Practical Malware Analysis

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Practical Malware Analysis by Andrew Honig Published by No Starch Press, 2012
  1. Cover
  2. Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software
  3. Praise for Practical Malware Analysis
  4. Warning
  5. About the Authors
  6. About the Technical Reviewer
  7. About the Contributing Authors
  8. Foreword
  9. Acknowledgments
  10. Individual Thanks
  11. Introduction
  12. What Is Malware Analysis?
  13. Prerequisites
  14. Practical, Hands-On Learning
  15. What’s in the Book?
  16. 0. Malware Analysis Primer
  17. The Goals of Malware Analysis
  18. Malware Analysis Techniques
  19. Types of Malware
  20. General Rules for Malware Analysis
  21. I. Basic Analysis
  22. 1. Basic Static Techniques
  23. Antivirus Scanning: A Useful First Step
  24. Hashing: A Fingerprint for Malware
  25. Finding Strings
  26. Packed and Obfuscated Malware
  27. Portable Executable File Format
  28. Linked Libraries and Functions
  29. Static Analysis in Practice
  30. The PE File Headers and Sections
  31. Conclusion
  32. Labs
  33. 2. Malware Analysis in Virtual Machines
  34. The Structure of a Virtual Machine
  35. Creating Your Malware Analysis Machine
  36. Using Your Malware Analysis Machine
  37. The Risks of Using VMware for Malware Analysis
  38. Record/Replay: Running Your Computer in Reverse
  39. Conclusion
  40. 3. Basic Dynamic Analysis
  41. Sandboxes: The Quick-and-Dirty Approach
  42. Running Malware
  43. Monitoring with Process Monitor
  44. Viewing Processes with Process Explorer
  45. Comparing Registry Snapshots with Regshot
  46. Faking a Network
  47. Packet Sniffing with Wireshark
  48. Using INetSim
  49. Basic Dynamic Tools in Practice
  50. Conclusion
  51. Labs
  52. II. Advanced Static Analysis
  53. 4. A Crash Course in x86 Disassembly
  54. Levels of Abstraction
  55. Reverse-Engineering
  56. The x86 Architecture
  57. Conclusion
  58. 5. IDA Pro
  59. Loading an Executable
  60. The IDA Pro Interface
  61. Using Cross-References
  62. Analyzing Functions
  63. Using Graphing Options
  64. Enhancing Disassembly
  65. Extending IDA with Plug-ins
  66. Conclusion
  67. Labs
  68. 6. Recognizing C Code Constructs in Assembly
  69. Global vs. Local Variables
  70. Disassembling Arithmetic Operations
  71. Recognizing if Statements
  72. Recognizing Loops
  73. Understanding Function Call Conventions
  74. Analyzing switch Statements
  75. Disassembling Arrays
  76. Identifying Structs
  77. Analyzing Linked List Traversal
  78. Conclusion
  79. Labs
  80. 7. Analyzing Malicious Windows Programs
  81. The Windows API
  82. The Windows Registry
  83. Networking APIs
  84. Following Running Malware
  85. Kernel vs. User Mode
  86. The Native API
  87. Conclusion
  88. Labs
  89. III. Advanced Dynamic Analysis
  90. 8. Debugging
  91. Source-Level vs. Assembly-Level Debuggers
  92. Kernel vs. User-Mode Debugging
  93. Using a Debugger
  94. Exceptions
  95. Modifying Execution with a Debugger
  96. Modifying Program Execution in Practice
  97. Conclusion
  98. 9. OllyDbg
  99. Loading Malware
  100. The OllyDbg Interface
  101. Memory Map
  102. Viewing Threads and Stacks
  103. Executing Code
  104. Breakpoints
  105. Loading DLLs
  106. Tracing
  107. Exception Handling
  108. Patching
  109. Analyzing Shellcode
  110. Assistance Features
  111. Plug-ins
  112. Scriptable Debugging
  113. Conclusion
  114. Labs
  115. 10. Kernel Debugging with WinDbg
  116. Drivers and Kernel Code
  117. Setting Up Kernel Debugging
  118. Using WinDbg
  119. Microsoft Symbols
  120. Kernel Debugging in Practice
  121. Rootkits
  122. Loading Drivers
  123. Kernel Issues for Windows Vista, Windows 7, and x64 Versions
  124. Conclusion
  125. Labs
  126. IV. Malware Functionality
  127. 11. Malware Behavior
  128. Downloaders and Launchers
  129. Backdoors
  130. Credential Stealers
  131. Persistence Mechanisms
  132. Privilege Escalation
  133. Covering Its Tracks—User-Mode Rootkits
  134. Conclusion
  135. Labs
  136. 12. Covert Malware Launching
  137. Launchers
  138. Process Injection
  139. Process Replacement
  140. Hook Injection
  141. Detours
  142. APC Injection
  143. Conclusion
  144. Labs
  145. 13. Data Encoding
  146. The Goal of Analyzing Encoding Algorithms
  147. Simple Ciphers
  148. Common Cryptographic Algorithms
  149. Custom Encoding
  150. Decoding
  151. Conclusion
  152. Labs
  153. 14. Malware-Focused Network Signatures
  154. Network Countermeasures
  155. Safely Investigate an Attacker Online
  156. Content-Based Network Countermeasures
  157. Combining Dynamic and Static Analysis Techniques
  158. Understanding the Attacker’s Perspective
  159. Conclusion
  160. Labs
  161. V. Anti-Reverse-Engineering
  162. 15. Anti-Disassembly
  163. Understanding Anti-Disassembly
  164. Defeating Disassembly Algorithms
  165. Anti-Disassembly Techniques
  166. Obscuring Flow Control
  167. Thwarting Stack-Frame Analysis
  168. Conclusion
  169. Labs
  170. 16. Anti-Debugging
  171. Windows Debugger Detection
  172. Identifying Debugger Behavior
  173. Interfering with Debugger Functionality
  174. Debugger Vulnerabilities
  175. Conclusion
  176. Labs
  177. 17. Anti-Virtual Machine Techniques
  178. VMware Artifacts
  179. Vulnerable Instructions
  180. Tweaking Settings
  181. Escaping the Virtual Machine
  182. Conclusion
  183. Labs
  184. 18. Packers and Unpacking
  185. Packer Anatomy
  186. Identifying Packed Programs
  187. Unpacking Options
  188. Automated Unpacking
  189. Manual Unpacking
  190. Tips and Tricks for Common Packers
  191. Analyzing Without Fully Unpacking
  192. Packed DLLs
  193. Conclusion
  194. Labs
  195. VI. Special Topics
  196. 19. Shellcode Analysis
  197. Loading Shellcode for Analysis
  198. Position-Independent Code
  199. Identifying Execution Location
  200. Manual Symbol Resolution
  201. A Full Hello World Example
  202. Shellcode Encodings
  203. NOP Sleds
  204. Finding Shellcode
  205. Conclusion
  206. Labs
  207. 20. C++ Analysis
  208. Object-Oriented Programming
  209. Virtual vs. Nonvirtual Functions
  210. Creating and Destroying Objects
  211. Conclusion
  212. Labs
  213. 21. 64-Bit Malware
  214. Why 64-Bit Malware?
  215. Differences in x64 Architecture
  216. Windows 32-Bit on Windows 64-Bit
  217. 64-Bit Hints at Malware Functionality
  218. Conclusion
  219. Labs
  220. A. Important Windows Functions
  221. B. Tools for Malware Analysis
  222. C. Solutions to Labs
  223. Lab 1-1 Solutions
  224. Lab 1-2 Solutions
  225. Lab 1-3 Solutions
  226. Lab 1-4 Solutions
  227. Lab 3-1 Solutions
  228. Lab 3-2 Solutions
  229. Lab 3-3 Solutions
  230. Lab 3-4 Solutions
  231. Lab 5-1 Solutions
  232. Lab 6-1 Solutions
  233. Lab 6-2 Solutions
  234. Lab 6-3 Solutions
  235. Lab 6-4 Solutions
  236. Lab 7-1 Solutions
  237. Lab 7-2 Solutions
  238. Lab 7-3 Solutions
  239. Lab 9-1 Solutions
  240. Lab 9-2 Solutions
  241. Lab 9-3 Solutions
  242. Lab 10-1 Solutions
  243. Lab 10-2 Solutions
  244. Lab 10-3 Solutions
  245. Lab 11-1 Solutions
  246. Lab 11-2 Solutions
  247. Lab 11-3 Solutions
  248. Lab 12-1 Solutions
  249. Lab 12-2 Solutions
  250. Lab 12-3 Solutions
  251. Lab 12-4 Solutions
  252. Lab 13-1 Solutions
  253. Lab 13-2 Solutions
  254. Lab 13-3 Solutions
  255. Lab 14-1 Solutions
  256. Lab 14-2 Solutions
  257. Lab 14-3 Solutions
  258. Lab 15-1 Solutions
  259. Lab 15-2 Solutions
  260. Lab 15-3 Solutions
  261. Lab 16-1 Solutions
  262. Lab 16-2 Solutions
  263. Lab 16-3 Solutions
  264. Lab 17-1 Solutions
  265. Lab 17-2 Solutions
  266. Lab 17-3 Solutions
  267. Lab 18-1 Solutions
  268. Lab 18-2 Solutions
  269. Lab 18-3 Solutions
  270. Lab 18-4 Solutions
  271. Lab 18-5 Solutions
  272. Lab 19-1 Solutions
  273. Lab 19-2 Solutions
  274. Lab 19-3 Solutions
  275. Lab 20-1 Solutions
  276. Lab 20-2 Solutions
  277. Lab 20-3 Solutions
  278. Lab 21-1 Solutions
  279. Lab 21-2 Solutions
  280. Index
  281. Index
  282. Index
  283. Index
  284. Index
  285. Index
  286. Index
  287. Index
  288. Index
  289. Index
  290. Index
  291. Index
  292. Index
  293. Index
  294. Index
  295. Index
  296. Index
  297. Index
  298. Index
  299. Index
  300. Index
  301. Index
  302. Index
  303. Index
  304. Index
  305. Index
  306. Index
  307. Updates
  308. About the Authors
  309. Copyright

Common Cryptographic Algorithms

Simple cipher schemes that are the equivalent of substitution ciphers differ greatly from modern cryptographic ciphers. Modern cryptography takes into account the exponentially increasing computing capabilities, and ensures that algorithms are designed to require so much computational power that breaking the cryptography is impractical.

The simple cipher schemes we have discussed previously don’t even pretend to be protected from brute-force measures. Their main purpose is to obscure. Cryptography has evolved and developed over time, and it is now integrated into every aspect of computer use, such as SSL in a web browser or the encryption used at a wireless access point. Why then, does malware not always take advantage of this cryptography for hiding its sensitive information?

Malware often uses simple cipher schemes because they are easy and often sufficient. Also, using standard cryptography does have potential drawbacks, particularly with regard to malware:

  • Cryptographic libraries can be large, so malware may need to statically integrate the code or link to existing code.

  • Having to link to code that exists on the host may reduce portability.

  • Standard cryptographic libraries are easily detected (via function imports, function matching, or the identification of cryptographic constants).

  • Users of symmetric encryption algorithms need to worry about how to hide the key.

Many standard cryptographic algorithms rely on a strong key to store their secrets. The idea is that the algorithm itself is widely known, but without the key, it is nearly impossible (that is, it would require a massive amount of work) to decrypt the cipher text. In order to ensure a sufficient amount of work for decrypting, the key must typically be long enough so that all of the potential keys cannot be easily tested. For the standard algorithms that malware might use, the trick is to identify not only the algorithm, but also the key.

There are several easy ways to identify the use of standard cryptography. They include looking for strings and imports that reference cryptographic functions and using several tools to search for specific content.

Recognizing Strings and Imports

One way to identify standard cryptographic algorithms is by recognizing strings that refer to the use of cryptography. This can occur when cryptographic libraries such as OpenSSL are statically compiled into malware. For example, the following is a selection of strings taken from a piece of malware compiled with OpenSSL encryption:

OpenSSL 1.0.0a
SSLv3 part of OpenSSL 1.0.0a
TLSv1 part of OpenSSL 1.0.0a
SSLv2 part of OpenSSL 1.0.0a
You need to read the OpenSSL FAQ, http://www.openssl.org/support/faq.html
%s(%d): OpenSSL internal error, assertion failed: %s
AES for x86, CRYPTOGAMS by <appro@openssl.org>

Another way to look for standard cryptography is to identify imports that reference cryptographic functions. For example, Figure 13-9 is a screenshot from IDA Pro showing some cryptographic imports that provide services related to hashing, key generation, and encryption. Most (though not all) of the Microsoft functions that pertain to cryptography start with Crypt, CP (for Cryptographic Provider), or Cert.

IDA Pro imports listing showing cryptographic functions

Figure 13-9. IDA Pro imports listing showing cryptographic functions

Searching for Cryptographic Constants

A third basic method of detecting cryptography is to use a tool that can search for commonly used cryptographic constants. Here, we’ll look at using IDA Pro’s FindCrypt2 and Krypto ANALyzer.

Using FindCrypt2

IDA Pro has a plug-in called FindCrypt2, included in the IDA Pro SDK (or available from http://www.hex-rays.com/idapro/freefiles/findcrypt.zip), which searches the program body for any of the constants known to be associated with cryptographic algorithms. This works well, since most cryptographic algorithms employ some type of magic constant. A magic constant is some fixed string of bits that is associated with the essential structure of the algorithm.

Note

Some cryptographic algorithms do not employ a magic constant. Notably, the International Data Encryption Algorithm (IDEA) and the RC4 algorithm build their structures on the fly, and thus are not in the list of algorithms that will be identified. Malware often employs the RC4 algorithm, probably because it is small and easy to implement in software, and it has no cryptographic constants to give it away.

FindCrypt2 runs automatically on any new analysis, or it can be run manually from the plug-in menu. Figure 13-10 shows the IDA Pro output window with the results of running FindCrypt2 on a malicious DLL. As you can see, the malware contains a number of constants that begin with DES. By identifying the functions that reference these constants, you can quickly get a handle on the functions that implement the cryptography.

IDA Pro FindCrypt2 output

Figure 13-10. IDA Pro FindCrypt2 output

Using Krypto ANALyzer

A tool that uses the same principles as the FindCrypt2 IDA Pro plug-in is the Krypto ANALyzer (KANAL). KANAL is a plug-in for PEiD (http://www.peid.has.it/) and has a wider range of constants (though as a result, it may tend to produce more false positives). In addition to constants, KANAL also recognizes Base64 tables and cryptography-related function imports.

Figure 13-11 shows the PEiD window on the left and the KANAL plug-in window on the right. PEiD plug-ins can be run by clicking the arrow in the lower-right corner. When KANAL is run, it identifies constants, tables, and cryptography-related function imports in a list. Figure 13-11 shows KANAL finding a Base64 table, a CRC32 constant, and several Crypt... import functions in malware.

PEiD and Krypto ANALyzer (KANAL) output

Figure 13-11. PEiD and Krypto ANALyzer (KANAL) output

Searching for High-Entropy Content

Another way to identify the use of cryptography is to search for high-entropy content. In addition to potentially highlighting cryptographic constants or cryptographic keys, this technique can also identify encrypted content itself. Because of the broad reach of this technique, it is potentially applicable in cases where cryptographic constants are not found (like RC4).

Warning

The high-entropy content technique is fairly blunt and may best be used as a last resort. Many types of content—such as pictures, movies, audio files, and other compressed data—display high entropy and are indistinguishable from encrypted content except for their headers.

The IDA Entropy Plugin (http://www.smokedchicken.org/2010/06/ida-entropy-plugin.html) is one tool that implements this technique for PE files. You can load the plug-in into IDA Pro by placing the ida-ent.plw file in the IDA Pro plug-ins directory.

Let’s use as our test case the same malware that showed signs of DES encryption from Figure 13-10. Once the file is loaded in IDA Pro, start the IDA Entropy Plugin. The initial window is the Entropy Calculator, which is shown as the left window in Figure 13-12. Any segment can be selected and analyzed individually. In this case, we are focused on a small portion of the rdata segment. The Deep Analyze button uses the parameters specified (chunk size, step size, and maximum entropy) and scans the specified area for chunks that exceed the listed entropy. If you compare the output in Figure 13-10 with the results returned in the deep analysis results window in Figure 13-12, you will see that the same addresses around 0x100062A4 are highlighted. The IDA Pro Entropy Plugin has found the DES constants (which indicates a high degree of entropy) with no knowledge of the constants themselves!

IDA Pro Entropy Plugin

Figure 13-12. IDA Pro Entropy Plugin

In order to use entropy testing effectively, it is important to understand the dependency between the chunk size and entropy score. The setting shown in Figure 13-12 (chunk size of 64 with maximum entropy of 5.95) is actually a good generic test that will find many types of constants, and will actually locate any Base64-encoding string as well (even ones that are nonstandard).

A 64-byte string with 64 distinct byte values has the highest possible entropy value. The 64 values are related to the entropy value of 6 (which refers to 6 bits of entropy), since the number of values that can be expressed with 6 bits is 64.

Another setting that can be useful is a chunk size of 256 with entropy above 7.9. This means that there is a string of 256 consecutive bytes, reflecting nearly all 256 possible byte values.

The IDA Pro Entropy Plugin also has a tool that provides a graphical overview of the area of interest, which can be used to guide the values you should select for the maximum entropy score, and also helps to determine where to focus. The Draw button produces a graph that shows higher-entropy regions as lighter bars and lower-entropy regions as darker bars. By hovering over the graph with the mouse cursor, you can see the raw entropy scores for that specific spot on the graph. Because the entropy map is difficult to appreciate in printed form, a line graph of the same file is included in Figure 13-13 to illustrate how the entropy map can be useful.

The graph in Figure 13-13 was generated using the same chunk size of 64. The graph shows only high values, from 4.8 to 6.2. Recall that the maximum entropy value for that chunk size is 6. Notice the spike that reaches 6 above the number 25000. This is the same area of the file that contains the DES constants highlighted in Figure 13-10 and Figure 13-12.

Entropy graph for a malicious executable

Figure 13-13. Entropy graph for a malicious executable

A couple of other features stand out. One is the plateau between blocks 4000 and 22000. This represents the actual code, and it is typical of code to reach an entropy value of this level. Code is typically contiguous, so it will form a series of connected peaks.

A more interesting feature is the spike at the end of the file to about 5.5. The fact that it is a fairly high value unconnected with any other peaks makes it stand out. When analyzed, it is found to be DES-encrypted configuration data for the malware, which hides its command-and-control information.