Table of Contents for
PostGIS Cookbook - Second Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition PostGIS Cookbook - Second Edition by Thomas J Kraft Published by Packt Publishing, 2018
  1. PostGIS Cookbook, Second Edition
  2. Title Page
  3. Copyright and Credits
  4. PostGIS Cookbook Second Edition
  5. Packt Upsell
  6. Why subscribe?
  7. PacktPub.com
  8. Contributors
  9. About the authors
  10. Packt is searching for authors like you
  11. Table of Contents
  12. Preface
  13. Who this book is for
  14. What this book covers
  15. To get the most out of this book
  16. Download the example code files
  17. Download the color images
  18. Conventions used
  19. Sections
  20. Getting ready
  21. How to do it…
  22. How it works…
  23. There's more…
  24. See also
  25. Get in touch
  26. Reviews
  27. Moving Data In and Out of PostGIS
  28. Introduction
  29. Importing nonspatial tabular data (CSV) using PostGIS functions
  30. Getting ready
  31. How to do it...
  32. How it works...
  33. Importing nonspatial tabular data (CSV) using GDAL
  34. Getting ready
  35. How to do it...
  36. How it works...
  37. Importing shapefiles with shp2pgsql
  38. How to do it...
  39. How it works...
  40. There's more...
  41. Importing and exporting data with the ogr2ogr GDAL command
  42. How to do it...
  43. How it works...
  44. See also
  45. Handling batch importing and exporting of datasets
  46. Getting ready
  47. How to do it...
  48. How it works...
  49. Exporting data to a shapefile with the pgsql2shp PostGIS command
  50. How to do it...
  51. How it works...
  52. Importing OpenStreetMap data with the osm2pgsql command
  53. Getting ready
  54. How to do it...
  55. How it works...
  56. Importing raster data with the raster2pgsql PostGIS command
  57. Getting ready
  58. How to do it...
  59. How it works...
  60. Importing multiple rasters at a time
  61. Getting ready
  62. How to do it...
  63. How it works...
  64. Exporting rasters with the gdal_translate and gdalwarp GDAL commands
  65. Getting ready
  66. How to do it...
  67. How it works...
  68. See also
  69. Structures That Work
  70. Introduction
  71. Using geospatial views
  72. Getting ready
  73. How to do it...
  74. How it works...
  75. There's more...
  76. See also
  77. Using triggers to populate the geometry column
  78. Getting ready
  79. How to do it...
  80. There's more...
  81. Extending further...
  82. See also
  83. Structuring spatial data with table inheritance
  84. Getting ready
  85. How to do it...
  86. How it works...
  87. See also
  88. Extending inheritance – table partitioning
  89. Getting ready
  90. How to do it...
  91. How it works...
  92. See also
  93. Normalizing imports
  94. Getting ready
  95. How to do it...
  96. How it works...
  97. There's more...
  98. Normalizing internal overlays
  99. Getting ready
  100. How to do it...
  101. How it works...
  102. There's more...
  103. Using polygon overlays for proportional census estimates
  104. Getting ready
  105. How to do it...
  106. How it works...
  107. Working with Vector Data – The Basics
  108. Introduction
  109. Working with GPS data
  110. Getting ready
  111. How to do it...
  112. How it works...
  113. Fixing invalid geometries
  114. Getting ready
  115. How to do it...
  116. How it works...
  117. GIS analysis with spatial joins
  118. Getting ready
  119. How to do it...
  120. How it works...
  121. Simplifying geometries
  122. How to do it...
  123. How it works...
  124. Measuring distances
  125. Getting ready
  126. How to do it...
  127. How it works...
  128. Merging polygons using a common attribute
  129. Getting ready
  130. How to do it...
  131. How it works...
  132. Computing intersections
  133. Getting ready
  134. How to do it...
  135. How it works...
  136. Clipping geometries to deploy data
  137. Getting ready
  138. How to do it...
  139. How it works...
  140. Simplifying geometries with PostGIS topology
  141. Getting ready
  142. How to do it...
  143. How it works...
  144. Working with Vector Data – Advanced Recipes
  145. Introduction
  146. Improving proximity filtering with KNN
  147. Getting ready
  148. How to do it...
  149. How it works...
  150. See also
  151. Improving proximity filtering with KNN – advanced
  152. Getting ready
  153. How to do it...
  154. How it works...
  155. See also
  156. Rotating geometries
  157. Getting ready
  158. How to do it...
  159. How it works...
  160. See also
  161. Improving ST_Polygonize
  162. Getting ready
  163. How to do it...
  164. See also
  165. Translating, scaling, and rotating geometries – advanced
  166. Getting ready
  167. How to do it...
  168. How it works...
  169. See also
  170. Detailed building footprints from LiDAR
  171. Getting ready
  172. How to do it...
  173. How it works...
  174. Creating a fixed number of clusters from a set of points
  175. Getting ready
  176. How to do it...
  177. Calculating Voronoi diagrams
  178. Getting ready
  179. How to do it...
  180. Working with Raster Data
  181. Introduction
  182. Getting and loading rasters
  183. Getting ready
  184. How to do it...
  185. How it works...
  186. Working with basic raster information and analysis
  187. Getting ready
  188. How to do it...
  189. How it works...
  190. Performing simple map-algebra operations
  191. Getting ready
  192. How to do it...
  193. How it works...
  194. Combining geometries with rasters for analysis
  195. Getting ready
  196. How to do it...
  197. How it works...
  198. Converting between rasters and geometries
  199. Getting ready
  200. How to do it...
  201. How it works...
  202. Processing and loading rasters with GDAL VRT
  203. Getting ready
  204. How to do it...
  205. How it works...
  206. Warping and resampling rasters
  207. Getting ready
  208. How to do it...
  209. How it works...
  210. Performing advanced map-algebra operations
  211. Getting ready
  212. How to do it...
  213. How it works...
  214. Executing DEM operations
  215. Getting ready
  216. How to do it...
  217. How it works...
  218. Sharing and visualizing rasters through SQL
  219. Getting ready
  220. How to do it...
  221. How it works...
  222. Working with pgRouting
  223. Introduction
  224. Startup – Dijkstra routing
  225. Getting ready
  226. How to do it...
  227. Loading data from OpenStreetMap and finding the shortest path using A*
  228. Getting ready
  229. How to do it...
  230. How it works...
  231. Calculating the driving distance/service area
  232. Getting ready
  233. How to do it...
  234. See also
  235. Calculating the driving distance with demographics
  236. Getting ready
  237. How to do it...
  238. Extracting the centerlines of polygons
  239. Getting ready
  240. How to do it...
  241. There's more...
  242. Into the Nth Dimension
  243. Introduction
  244. Importing LiDAR data
  245. Getting ready
  246. How to do it...
  247. See also
  248. Performing 3D queries on a LiDAR point cloud
  249. How to do it...
  250. Constructing and serving buildings 2.5D
  251. Getting ready
  252. How to do it...
  253. Using ST_Extrude to extrude building footprints
  254. How to do it...
  255. Creating arbitrary 3D objects for PostGIS
  256. Getting ready
  257. How to do it...
  258. Exporting models as X3D for the web
  259. Getting ready
  260. How to do it...
  261. There's more...
  262. Reconstructing Unmanned Aerial Vehicle (UAV) image footprints with PostGIS 3D
  263. Getting started
  264. How to do it...
  265. UAV photogrammetry in PostGIS – point cloud
  266. Getting ready
  267. How to do it...
  268. UAV photogrammetry in PostGIS – DSM creation
  269. Getting ready
  270. How to do it...
  271. PostGIS Programming
  272. Introduction
  273. Writing PostGIS vector data with Psycopg
  274. Getting ready
  275. How to do it...
  276. How it works...
  277. Writing PostGIS vector data with OGR Python bindings
  278. Getting ready
  279. How to do it...
  280. How it works...
  281. Writing PostGIS functions with PL/Python
  282. Getting ready
  283. How to do it...
  284. How it works...
  285. Geocoding and reverse geocoding using the GeoNames datasets
  286. Getting ready
  287. How to do it...
  288. How it works...
  289. Geocoding using the OSM datasets with trigrams
  290. Getting ready
  291. How to do it...
  292. How it works...
  293. Geocoding with geopy and PL/Python
  294. Getting ready
  295. How to do it...
  296. How it works...
  297. Importing NetCDF datasets with Python and GDAL
  298. Getting ready
  299. How to do it...
  300. How it works...
  301. PostGIS and the Web
  302. Introduction
  303. Creating WMS and WFS services with MapServer
  304. Getting ready
  305. How to do it...
  306. How it works...
  307. See also
  308. Creating WMS and WFS services with GeoServer
  309. Getting ready
  310. How to do it...
  311. How it works...
  312. See also
  313. Creating a WMS Time service with MapServer
  314. Getting ready
  315. How to do it...
  316. How it works...
  317. Consuming WMS services with OpenLayers
  318. Getting ready
  319. How to do it...
  320. How it works..
  321. Consuming WMS services with Leaflet
  322. How to do it...
  323. How it works...
  324. Consuming WFS-T services with OpenLayers
  325. Getting ready
  326. How to do it...
  327. How it works...
  328. Developing web applications with GeoDjango – part 1
  329. Getting ready
  330. How to do it...
  331. How it works...
  332. Developing web applications with GeoDjango – part 2
  333. Getting ready
  334. How to do it...
  335. How it works...
  336. Developing a web GPX viewer with Mapbox
  337. How to do it...
  338. How it works...
  339. Maintenance, Optimization, and Performance Tuning
  340. Introduction
  341. Organizing the database
  342. Getting ready
  343. How to do it...
  344. How it works...
  345. Setting up the correct data privilege mechanism
  346. Getting ready
  347. How to do it...
  348. How it works...
  349. Backing up the database
  350. Getting ready
  351. How to do it...
  352. How it works...
  353. Using indexes
  354. Getting ready
  355. How to do it...
  356. How it works...
  357. Clustering for efficiency
  358. Getting ready
  359. How to do it...
  360. How it works...
  361. Optimizing SQL queries
  362. Getting ready
  363. How to do it...
  364. How it works...
  365. Migrating a PostGIS database to a different server
  366. Getting ready
  367. How to do it...
  368. How it works...
  369. Replicating a PostGIS database with streaming replication
  370. Getting ready
  371. How to do it...
  372. How it works...
  373. Geospatial sharding
  374. Getting ready
  375. How to do it...
  376. How it works...
  377. Paralellizing in PosgtreSQL
  378. Getting ready
  379. How to do it...
  380. How it works...
  381. Using Desktop Clients
  382. Introduction
  383. Adding PostGIS layers – QGIS
  384. Getting ready
  385. How to do it...
  386. How it works...
  387. Using the Database Manager plugin – QGIS
  388. Getting ready
  389. How to do it...
  390. How it works...
  391. Adding PostGIS layers – OpenJUMP GIS
  392. Getting ready
  393. How to do it...
  394. How it works...
  395. Running database queries – OpenJUMP GIS
  396. Getting ready
  397. How to do it...
  398. How it works...
  399. Adding PostGIS layers – gvSIG
  400. Getting ready
  401. How to do it...
  402. How it works...
  403. Adding PostGIS layers – uDig
  404. How to do it...
  405. How it works...
  406. Introduction to Location Privacy Protection Mechanisms
  407. Introduction
  408. Definition of Location Privacy Protection Mechanisms – LPPMs
  409. Classifying LPPMs
  410. Adding noise to protect location data
  411. Getting ready
  412. How to do it...
  413. How it works...
  414. Creating redundancy in geographical query results
  415. Getting ready
  416. How to do it...
  417. How it works...
  418. References
  419. Other Books You May Enjoy
  420. Leave a review - let other readers know what you think

Introduction

There are several ways to write PostGIS programs, and in this chapter we will see a few of them. You will mainly use the Python language throughout this chapter. Python is a fantastic language with a plethora of GIS and scientific libraries that can be combined with PostGIS to write awesome geospatial applications.

If you are new to Python, you can quickly get productive with these excellent web resources:

You can combine Python with some excellent and popular libraries, such as:

  • Psycopg: This is the most complete and popular Python DB API implementation for PostgreSQL; see http://initd.org/psycopg/
  • GDAL: Used to unchain the powerful GDAL library in your Python scripts; see http://www.gdal.org/gdal_tutorial.html
  • requests: This is a handy Python standard library to manage HTTP stuff, such as opening URLs
  • simplejson: This is a simple and fast JSON encoder/decoder

The recipes in this chapter will cover some other useful geospatial Python libraries that are worthy of being looked at if you are developing a geospatial application. Under these Python libraries, the following libraries are included:

In the first recipe, you will write a program that uses Python and its utilities such as psycopg, requests, and simplejson to fetch weather data from the web and import it in PostGIS.

In the second recipe, we will drive you to use Python and the GDAL OGR Python bindings library to create a script for geocoding a list of place names using one of the GeoNames web services.

You will then write a Python function for PostGIS using the PL/Python language to query the http://openweathermap.org/ web services, already used in the first recipe, to calculate the weather for a PostGIS geometry from within a PostgreSQL function.

In the fourth recipe, you will create two PL/pgSQL PostGIS functions that will let you perform geocoding and reverse geocoding using the GeoNames datasets.

After this, there is a recipe in which you will use the OpenStreetMap street datasets imported in PostGIS to implement a very basic Python class in order to provide a geocode implementation to the class's consumer using PostGIS trigram support.

The sixth recipe will show you how to create a PL/Python function using the geopy library to geocode addresses using a web geocoding API such as Google Maps, Yahoo! Maps, Geocoder, GeoNames, and others.

In the last recipe of this chapter, you will create a Python script to import data from the netCDF format to PostGIS using the GDAL Python bindings.

Let's see some notes before starting with the recipes in this chapter.

If you are using Linux or macOS, follow these steps:

  1. Create a Python virtualenv (http://www.virtualenv.org/en/latest/) to keep a Python-isolated environment to be used for all the Python recipes in this book and activate it. Create it in a central directory, as you will need to use it for most of the Python recipes in this book:
      $ cd ~/virtualenvs
      $ virtualenv --no-site-packages postgis-cb-env
      $ source postgis-cb-env/bin/activate
  1. Once activated, you can install the Python libraries you will need for the recipes in this chapter:
      $ pip install simplejson
      $ pip install psycopg2
      $ pip install numpy
      $ pip install requests
      $ pip install gdal
      $ pip install geopy
  1. If you are new to the virtual environment and you are wondering where the libraries have been installed, you should find everything in the virtualenv directory in our development box. You can find the libraries using the following command:
      $ ls /home/capooti/virtualenv/postgis-cb-env/lib/
python2.7/site-packages

If you are wondering what is going on with the previous command lines, then virtualenv is a tool that will be used to create isolated Python environments, and you can find more information about this tool at http://www.virtualenv.org, while pip (http://www.pip-installer.org) is a package management system used to install and manage software packages written in Python.

If you are using Windows, follow these steps:

  1. The easiest way to get Python and all the libraries needed for the recipes in this chapter is to use OSGeo4W, a popular binary distribution of open source geospatial software for Windows. You can download it from http://trac.osgeo.org/osgeo4w/.
  2. In our Windows box the OSGeo4W shell, at the time of writing this book comes with Python 2.7, GDAL 2.2 Python bindings, simplejson, psycopg2, and numpy. You will only need to install geopy.
  3. The easiest way to install geopy and to eventually add more Python libraries to the OSGeo4W shell is to install setuptools and pip by following the instructions found at http://www.pip-installer.org/en/latest/installing.html. Open the OSGeo4W shell and just enter the following commands:
      > python ez_setup.py
      > python get-pip.py
      > pip install requests
      > pip install geopy