Table of Contents for
QGIS: Becoming a GIS Power User

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition QGIS: Becoming a GIS Power User by Alexander Bruy Published by Packt Publishing, 2017
  1. Cover
  2. Table of Contents
  3. QGIS: Becoming a GIS Power User
  4. QGIS: Becoming a GIS Power User
  5. QGIS: Becoming a GIS Power User
  6. Credits
  7. Preface
  8. What you need for this learning path
  9. Who this learning path is for
  10. Reader feedback
  11. Customer support
  12. 1. Module 1
  13. 1. Getting Started with QGIS
  14. Running QGIS for the first time
  15. Introducing the QGIS user interface
  16. Finding help and reporting issues
  17. Summary
  18. 2. Viewing Spatial Data
  19. Dealing with coordinate reference systems
  20. Loading raster files
  21. Loading data from databases
  22. Loading data from OGC web services
  23. Styling raster layers
  24. Styling vector layers
  25. Loading background maps
  26. Dealing with project files
  27. Summary
  28. 3. Data Creation and Editing
  29. Working with feature selection tools
  30. Editing vector geometries
  31. Using measuring tools
  32. Editing attributes
  33. Reprojecting and converting vector and raster data
  34. Joining tabular data
  35. Using temporary scratch layers
  36. Checking for topological errors and fixing them
  37. Adding data to spatial databases
  38. Summary
  39. 4. Spatial Analysis
  40. Combining raster and vector data
  41. Vector and raster analysis with Processing
  42. Leveraging the power of spatial databases
  43. Summary
  44. 5. Creating Great Maps
  45. Labeling
  46. Designing print maps
  47. Presenting your maps online
  48. Summary
  49. 6. Extending QGIS with Python
  50. Getting to know the Python Console
  51. Creating custom geoprocessing scripts using Python
  52. Developing your first plugin
  53. Summary
  54. 2. Module 2
  55. 1. Exploring Places – from Concept to Interface
  56. Acquiring data for geospatial applications
  57. Visualizing GIS data
  58. The basemap
  59. Summary
  60. 2. Identifying the Best Places
  61. Raster analysis
  62. Publishing the results as a web application
  63. Summary
  64. 3. Discovering Physical Relationships
  65. Spatial join for a performant operational layer interaction
  66. The CartoDB platform
  67. Leaflet and an external API: CartoDB SQL
  68. Summary
  69. 4. Finding the Best Way to Get There
  70. OpenStreetMap data for topology
  71. Database importing and topological relationships
  72. Creating the travel time isochron polygons
  73. Generating the shortest paths for all students
  74. Web applications – creating safe corridors
  75. Summary
  76. 5. Demonstrating Change
  77. TopoJSON
  78. The D3 data visualization library
  79. Summary
  80. 6. Estimating Unknown Values
  81. Interpolated model values
  82. A dynamic web application – OpenLayers AJAX with Python and SpatiaLite
  83. Summary
  84. 7. Mapping for Enterprises and Communities
  85. The cartographic rendering of geospatial data – MBTiles and UTFGrid
  86. Interacting with Mapbox services
  87. Putting it all together
  88. Going further – local MBTiles hosting with TileStream
  89. Summary
  90. 3. Module 3
  91. 1. Data Input and Output
  92. Finding geospatial data on your computer
  93. Describing data sources
  94. Importing data from text files
  95. Importing KML/KMZ files
  96. Importing DXF/DWG files
  97. Opening a NetCDF file
  98. Saving a vector layer
  99. Saving a raster layer
  100. Reprojecting a layer
  101. Batch format conversion
  102. Batch reprojection
  103. Loading vector layers into SpatiaLite
  104. Loading vector layers into PostGIS
  105. 2. Data Management
  106. Joining layer data
  107. Cleaning up the attribute table
  108. Configuring relations
  109. Joining tables in databases
  110. Creating views in SpatiaLite
  111. Creating views in PostGIS
  112. Creating spatial indexes
  113. Georeferencing rasters
  114. Georeferencing vector layers
  115. Creating raster overviews (pyramids)
  116. Building virtual rasters (catalogs)
  117. 3. Common Data Preprocessing Steps
  118. Converting points to lines to polygons and back – QGIS
  119. Converting points to lines to polygons and back – SpatiaLite
  120. Converting points to lines to polygons and back – PostGIS
  121. Cropping rasters
  122. Clipping vectors
  123. Extracting vectors
  124. Converting rasters to vectors
  125. Converting vectors to rasters
  126. Building DateTime strings
  127. Geotagging photos
  128. 4. Data Exploration
  129. Listing unique values in a column
  130. Exploring numeric value distribution in a column
  131. Exploring spatiotemporal vector data using Time Manager
  132. Creating animations using Time Manager
  133. Designing time-dependent styles
  134. Loading BaseMaps with the QuickMapServices plugin
  135. Loading BaseMaps with the OpenLayers plugin
  136. Viewing geotagged photos
  137. 5. Classic Vector Analysis
  138. Selecting optimum sites
  139. Dasymetric mapping
  140. Calculating regional statistics
  141. Estimating density heatmaps
  142. Estimating values based on samples
  143. 6. Network Analysis
  144. Creating a simple routing network
  145. Calculating the shortest paths using the Road graph plugin
  146. Routing with one-way streets in the Road graph plugin
  147. Calculating the shortest paths with the QGIS network analysis library
  148. Routing point sequences
  149. Automating multiple route computation using batch processing
  150. Matching points to the nearest line
  151. Creating a routing network for pgRouting
  152. Visualizing the pgRouting results in QGIS
  153. Using the pgRoutingLayer plugin for convenience
  154. Getting network data from the OSM
  155. 7. Raster Analysis I
  156. Using the raster calculator
  157. Preparing elevation data
  158. Calculating a slope
  159. Calculating a hillshade layer
  160. Analyzing hydrology
  161. Calculating a topographic index
  162. Automating analysis tasks using the graphical modeler
  163. 8. Raster Analysis II
  164. Calculating NDVI
  165. Handling null values
  166. Setting extents with masks
  167. Sampling a raster layer
  168. Visualizing multispectral layers
  169. Modifying and reclassifying values in raster layers
  170. Performing supervised classification of raster layers
  171. 9. QGIS and the Web
  172. Using web services
  173. Using WFS and WFS-T
  174. Searching CSW
  175. Using WMS and WMS Tiles
  176. Using WCS
  177. Using GDAL
  178. Serving web maps with the QGIS server
  179. Scale-dependent rendering
  180. Hooking up web clients
  181. Managing GeoServer from QGIS
  182. 10. Cartography Tips
  183. Using Rule Based Rendering
  184. Handling transparencies
  185. Understanding the feature and layer blending modes
  186. Saving and loading styles
  187. Configuring data-defined labels
  188. Creating custom SVG graphics
  189. Making pretty graticules in any projection
  190. Making useful graticules in printed maps
  191. Creating a map series using Atlas
  192. 11. Extending QGIS
  193. Defining custom projections
  194. Working near the dateline
  195. Working offline
  196. Using the QspatiaLite plugin
  197. Adding plugins with Python dependencies
  198. Using the Python console
  199. Writing Processing algorithms
  200. Writing QGIS plugins
  201. Using external tools
  202. 12. Up and Coming
  203. Preparing LiDAR data
  204. Opening File Geodatabases with the OpenFileGDB driver
  205. Using Geopackages
  206. The PostGIS Topology Editor plugin
  207. The Topology Checker plugin
  208. GRASS Topology tools
  209. Hunting for bugs
  210. Reporting bugs
  211. Bibliography
  212. Index

Labeling

We can activate labeling by going to Layer Properties | Labels, selecting Show labels for this layer, and selecting the attribute field that we want to Label with. This is all we need to do to display labels with default settings. While default labels are great for a quick preview, we will usually want to customize labels if we create visualizations for reports or standalone maps.

Using Expressions (the button that is right beside the attribute drop-down list), we can format the label text to suit our needs. For example, the NAME field in our sample airports.shp file contains text in uppercase. To display the airport names in mixed case instead, we can set the title(NAME) expression, which will reformat the name text in title case. We can also use multiple fields to create a label, for example, combining the name and elevation in brackets using the concatenation operator (||), as follows:

title(NAME) || ' (' || "ELEV" || ')'

Note the use of simple quotation marks around text, such as ' (', and double quotation marks around field names, such as "ELEV". The dialog will look like what is shown in this screenshot:

Labeling

The big preview area at the top of the dialog, titled Text/Buffer sample, shows a preview of the current settings. The background color can be adjusted to test readability on different backgrounds. Under the preview area, we find the different label settings, which will be described in detail in the following sections.

Customizing label text styles

In the Text section (shown in the previous screenshot), we can configure the text style. Besides changing Font, Style, Size, Color, and Transparency, we can also modify the Spacing between letters and words, as well as Blend mode, which works like the layer blending mode that we covered in Chapter 2, Viewing Spatial Data.

Note the column of buttons on the right-hand side of every setting. Clicking on these buttons allows us to create data-defined overrides, similar to those that we discussed at the beginning of the chapter when we talked about advanced vector styling. These data-defined overrides can be used, for example, to define different label colors or change the label size depending on an individual feature's attribute value or an expression.

Controlling label formatting

In the Formatting section, which is shown in the following screenshot, we can enable multiline labels by specifying a Wrap on character. Additionally, we can control Line height and Alignment. Besides the typical alignment options, the QGIS labeling engine also provides a Follow label placement option, which ensures that multiline labels are aligned towards the same side as the symbol the label belongs to:

Controlling label formatting

Finally, the Formatted numbers option offers a shortcut to format numerical values to a certain number of Decimal places.

An alternative to wrapping text on a certain character is the wordwrap function, available in expressions. It wraps the input string to a certain maximum or minimum number of characters. The following screenshot shows an example of wrapping a longer piece of text to a maximum of 22 characters per line:

Controlling label formatting

Configuring label buffers, background, and shadows

In the Buffer section, we can adjust the buffer Size, Color, and Transparency, as well as Pen join style and Blend mode. With transparency and blending, we can improve label readability without blocking out the underlying map too much, as shown in the following screenshot.

In the Background section, we can add a background shape in the form of a rectangle, square, circle, ellipsoid, or SVG. SVG backgrounds are great for creating effects such as highway shields, which we will discuss shortly.

Similarly, in the Shadow section, we can add a shadow to our labels. We can control everything from shadow direction to Color, Blur radius, Scale, and Transparency.

Controlling label placement

In the Placement section, we can configure which rules should be used to determine where the labels are placed. The available automatic label placement options depend on the layer geometry type.

Configuring point labels

For point layers, we can choose from the following:

  • The flexible Around point option tries to find the best position for labels by distributing them around the points without overlaps. As you can see in the following screenshot, some labels are put in the top-right corner of their point symbol while others appear at different positions on the left (for example, Anchorage Intl (129)) or right (for example, Big Lake (135)) side.
  • The Offset from point option forces all labels to a certain position; for example, all labels can be placed above their point symbol.

The following screenshot shows airport labels with a 50 percent transparent Buffer and Drop Shadow, placed using Around point. The Label distance is 1 mm.

Configuring point labels

Configuring line labels

For line layers, we can choose from the following placement options:

  • Parallel for straight labels that are rotated according to the line orientation
  • Curved for labels that follow the shape of the line
  • Horizontal for labels that keep a horizontal orientation, regardless of the line orientation

For further fine-tuning, we can define whether the label should be placed Above line, On line, or Below line, and how far above or below it should be placed using Label distance.

Configuring polygon labels

For polygon layers, the placement options are as follows:

  • Offset from centroid uses the polygon centroid as an anchor and works like Offset from point for point layers
  • Around centroid works in a manner similar to Around point
  • Horizontal places a horizontal label somewhere inside the polygon, independent of the centroid
  • Free fits a freely rotated label inside the polygon
  • Using perimeter places the label on the polygon's outline

The following screenshot shows lake labels (lakes.shp) using the Multiple lines feature wrapping on the empty space character, Center Alignment, a Letter spacing of 2, and positioning using the Free option:

Configuring polygon labels

Placing labels manually

Besides automatic label placement, we also have the option to use data-defined placement to position labels exactly where we want them to be. In the labeling toolbar, we find tools for moving and rotating labels by hand. They are active and available only for layers that have set up data-defined placement for at least X and Y coordinates:

  1. To start using the tools, we can simply add three new columns, label_x, label_y, and label_rot to, for example, the airports.shp file. We don't have to enter any values in the attribute table right now. The labeling engine will check for values, and if it finds the attribute fields empty, it will simply place the labels automatically.
  2. Then, we can specify these columns in the label Placement section. Configure the data-defined overrides by clicking on the buttons beside Coordinate X, Coordinate Y, and Rotation, as shown in the following screenshot:
    Placing labels manually
  3. By specifying data-defined placement, the labeling toolbar's tools are now available (note that the editing mode has to be turned on), and we can use the Move label and Rotate label tools to manipulate the labels on the map. The changes are written back to the attribute table.
  4. Try moving some labels, especially where they are placed closely together, and watch how the automatically placed labels adapt to your changes.

Controlling label rendering

In the Rendering section, we can define Scale-based visibility limits to display labels only at certain scales and Pixel size-based visibility to hide labels for small features. Here, we can also tell the labeling engine to Show all labels for this layer (including colliding labels), which are normally hidden by default.

The following example shows labels with road shields. You can download a blank road shield SVG from http://upload.wikimedia.org/wikipedia/commons/c/c3/Blank_shield.svg. Note how only Interstates are labeled. This can be achieved using the Data defined Show label setting in the Rendering section with the following expression:

"level" = 'Interstate'

The labels are positioned using the Horizontal option (in the Placement section). Additionally, Merge connected lines to avoid duplicate labels and Suppress labeling of features smaller than are activated; for example, 5 mm helps avoid clutter by not labeling pieces of road that are shorter than 5 mm in the current scale.

Controlling label rendering

To set up the road shield, go to the Background section and select the blank shield SVG from the folder you downloaded it in. To make sure that the label fits nicely inside the shield, we additionally specify the Size type field as a buffer with a Size of 1 mm. This makes the shield a little bigger than the label it contains.

If you click on Apply now, you will notice that the labels are not centered perfectly inside the shields. To fix this, we apply a small Offset in the Y direction to the shield position, as shown in the following screenshot. Additionally, it is recommended that you deactivate any label buffers as they tend to block out parts of the shield, and we don't need them anyway.

Controlling label rendering