Table of Contents for
QGIS: Becoming a GIS Power User

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition QGIS: Becoming a GIS Power User by Alexander Bruy Published by Packt Publishing, 2017
  1. Cover
  2. Table of Contents
  3. QGIS: Becoming a GIS Power User
  4. QGIS: Becoming a GIS Power User
  5. QGIS: Becoming a GIS Power User
  6. Credits
  7. Preface
  8. What you need for this learning path
  9. Who this learning path is for
  10. Reader feedback
  11. Customer support
  12. 1. Module 1
  13. 1. Getting Started with QGIS
  14. Running QGIS for the first time
  15. Introducing the QGIS user interface
  16. Finding help and reporting issues
  17. Summary
  18. 2. Viewing Spatial Data
  19. Dealing with coordinate reference systems
  20. Loading raster files
  21. Loading data from databases
  22. Loading data from OGC web services
  23. Styling raster layers
  24. Styling vector layers
  25. Loading background maps
  26. Dealing with project files
  27. Summary
  28. 3. Data Creation and Editing
  29. Working with feature selection tools
  30. Editing vector geometries
  31. Using measuring tools
  32. Editing attributes
  33. Reprojecting and converting vector and raster data
  34. Joining tabular data
  35. Using temporary scratch layers
  36. Checking for topological errors and fixing them
  37. Adding data to spatial databases
  38. Summary
  39. 4. Spatial Analysis
  40. Combining raster and vector data
  41. Vector and raster analysis with Processing
  42. Leveraging the power of spatial databases
  43. Summary
  44. 5. Creating Great Maps
  45. Labeling
  46. Designing print maps
  47. Presenting your maps online
  48. Summary
  49. 6. Extending QGIS with Python
  50. Getting to know the Python Console
  51. Creating custom geoprocessing scripts using Python
  52. Developing your first plugin
  53. Summary
  54. 2. Module 2
  55. 1. Exploring Places – from Concept to Interface
  56. Acquiring data for geospatial applications
  57. Visualizing GIS data
  58. The basemap
  59. Summary
  60. 2. Identifying the Best Places
  61. Raster analysis
  62. Publishing the results as a web application
  63. Summary
  64. 3. Discovering Physical Relationships
  65. Spatial join for a performant operational layer interaction
  66. The CartoDB platform
  67. Leaflet and an external API: CartoDB SQL
  68. Summary
  69. 4. Finding the Best Way to Get There
  70. OpenStreetMap data for topology
  71. Database importing and topological relationships
  72. Creating the travel time isochron polygons
  73. Generating the shortest paths for all students
  74. Web applications – creating safe corridors
  75. Summary
  76. 5. Demonstrating Change
  77. TopoJSON
  78. The D3 data visualization library
  79. Summary
  80. 6. Estimating Unknown Values
  81. Interpolated model values
  82. A dynamic web application – OpenLayers AJAX with Python and SpatiaLite
  83. Summary
  84. 7. Mapping for Enterprises and Communities
  85. The cartographic rendering of geospatial data – MBTiles and UTFGrid
  86. Interacting with Mapbox services
  87. Putting it all together
  88. Going further – local MBTiles hosting with TileStream
  89. Summary
  90. 3. Module 3
  91. 1. Data Input and Output
  92. Finding geospatial data on your computer
  93. Describing data sources
  94. Importing data from text files
  95. Importing KML/KMZ files
  96. Importing DXF/DWG files
  97. Opening a NetCDF file
  98. Saving a vector layer
  99. Saving a raster layer
  100. Reprojecting a layer
  101. Batch format conversion
  102. Batch reprojection
  103. Loading vector layers into SpatiaLite
  104. Loading vector layers into PostGIS
  105. 2. Data Management
  106. Joining layer data
  107. Cleaning up the attribute table
  108. Configuring relations
  109. Joining tables in databases
  110. Creating views in SpatiaLite
  111. Creating views in PostGIS
  112. Creating spatial indexes
  113. Georeferencing rasters
  114. Georeferencing vector layers
  115. Creating raster overviews (pyramids)
  116. Building virtual rasters (catalogs)
  117. 3. Common Data Preprocessing Steps
  118. Converting points to lines to polygons and back – QGIS
  119. Converting points to lines to polygons and back – SpatiaLite
  120. Converting points to lines to polygons and back – PostGIS
  121. Cropping rasters
  122. Clipping vectors
  123. Extracting vectors
  124. Converting rasters to vectors
  125. Converting vectors to rasters
  126. Building DateTime strings
  127. Geotagging photos
  128. 4. Data Exploration
  129. Listing unique values in a column
  130. Exploring numeric value distribution in a column
  131. Exploring spatiotemporal vector data using Time Manager
  132. Creating animations using Time Manager
  133. Designing time-dependent styles
  134. Loading BaseMaps with the QuickMapServices plugin
  135. Loading BaseMaps with the OpenLayers plugin
  136. Viewing geotagged photos
  137. 5. Classic Vector Analysis
  138. Selecting optimum sites
  139. Dasymetric mapping
  140. Calculating regional statistics
  141. Estimating density heatmaps
  142. Estimating values based on samples
  143. 6. Network Analysis
  144. Creating a simple routing network
  145. Calculating the shortest paths using the Road graph plugin
  146. Routing with one-way streets in the Road graph plugin
  147. Calculating the shortest paths with the QGIS network analysis library
  148. Routing point sequences
  149. Automating multiple route computation using batch processing
  150. Matching points to the nearest line
  151. Creating a routing network for pgRouting
  152. Visualizing the pgRouting results in QGIS
  153. Using the pgRoutingLayer plugin for convenience
  154. Getting network data from the OSM
  155. 7. Raster Analysis I
  156. Using the raster calculator
  157. Preparing elevation data
  158. Calculating a slope
  159. Calculating a hillshade layer
  160. Analyzing hydrology
  161. Calculating a topographic index
  162. Automating analysis tasks using the graphical modeler
  163. 8. Raster Analysis II
  164. Calculating NDVI
  165. Handling null values
  166. Setting extents with masks
  167. Sampling a raster layer
  168. Visualizing multispectral layers
  169. Modifying and reclassifying values in raster layers
  170. Performing supervised classification of raster layers
  171. 9. QGIS and the Web
  172. Using web services
  173. Using WFS and WFS-T
  174. Searching CSW
  175. Using WMS and WMS Tiles
  176. Using WCS
  177. Using GDAL
  178. Serving web maps with the QGIS server
  179. Scale-dependent rendering
  180. Hooking up web clients
  181. Managing GeoServer from QGIS
  182. 10. Cartography Tips
  183. Using Rule Based Rendering
  184. Handling transparencies
  185. Understanding the feature and layer blending modes
  186. Saving and loading styles
  187. Configuring data-defined labels
  188. Creating custom SVG graphics
  189. Making pretty graticules in any projection
  190. Making useful graticules in printed maps
  191. Creating a map series using Atlas
  192. 11. Extending QGIS
  193. Defining custom projections
  194. Working near the dateline
  195. Working offline
  196. Using the QspatiaLite plugin
  197. Adding plugins with Python dependencies
  198. Using the Python console
  199. Writing Processing algorithms
  200. Writing QGIS plugins
  201. Using external tools
  202. 12. Up and Coming
  203. Preparing LiDAR data
  204. Opening File Geodatabases with the OpenFileGDB driver
  205. Using Geopackages
  206. The PostGIS Topology Editor plugin
  207. The Topology Checker plugin
  208. GRASS Topology tools
  209. Hunting for bugs
  210. Reporting bugs
  211. Bibliography
  212. Index

Editing attributes

There are three main use cases of attribute editing:

  • First, we might want to edit the attributes of a specific feature, for example, to fix a wrong name
  • Second, we might want to edit the attributes of a group of features
  • Third, we might want to change the attributes of all features within a layer

Editing attributes in the attribute table

All three use cases are covered by the functionality available through the attribute table. We can access it by going to Layer | Open Attribute Table, using the Open Attribute Table button present in the Attributes toolbar, or in the layer name context menu.

  1. To change an attribute value, we always have to enable editing first.
  2. Then, we can double-click on any cell in the attribute table to activate the input mode, as shown in the upper dialog of the following screenshot, where I am editing NAME_2 of the first feature:
    Editing attributes in the attribute table
  3. Pressing the Enter key confirms the change, but to save the new value permanently, we also have to click on the Save Edit(s) button or press Ctrl + S.

Besides the classic attribute table view, QGIS also supports a form view, which you can see in the lower dialog of the previous image. You can switch between these two views using the buttons in the bottom-right corner of the attribute table dialog.

Tip

In the attribute table, we also find tools for handling selections (from left to right, starting at the fourth button): Delete selected features, Select features using an expression, Unselect all, Move selection to top, Invert selection, Pan map to the selected rows, Zoom map to the selected rows, and Copy selected rows to clipboard. Another way to select features in the attribute table is by clicking on the row number.

The next two buttons allow us to add and remove columns. When we click on the Delete column button, we get a list of columns to choose from. Similarly, the New column button brings up a dialog that we can use to specify the name and data type of the new column.

Editing attributes in the feature form

Another option to edit the attributes of one feature is to open the attribute form directly by clicking on the feature on the map using the Identify tool. By default, the Identify tool displays the attribute values in read mode, but we can enable the Auto open form option in the Identify Results panel, as shown here:

Editing attributes in the feature form

What you can see in the previous screenshot is the default feature attributes form that QGIS creates automatically, but we are not limited to this basic form. By going to Layer Properties | Fields section, we can configure the look and feel of the form in greater detail. The Attribute editor layout options are (in an increasing level of complexity) autogenerate, Drag and drop designer, and providing a .ui file. These options are described in detail as follows.

Creating a feature form using autogenerate

Autogenerate is the most basic option. You can assign a specific Edit widget and Alias for each field; this will replace the default input field and label in the form. For this example, we use the following edit widget types:

  • Text Edit supports inserting one or more lines of text.
  • Unique Values creates a drop-down list that allows the user to select one of the values that have already been used in the attribute table. If the Editable option is activated, the drop-down list is replaced by a text edit widget with autocompletion support.
  • Range creates an edit widget for numerical values from a specific range.

Note

For the complete list of available Edit widget types, refer to the user manual at http://docs.qgis.org/2.2/en/docs/user_manual/working_with_vector/vector_properties.html#fields-menu.

Designing a feature form using drag and drop designer

This allows more control over the form layout. As you can see in the next screenshot, the designer enables us to create tabs within the form and also makes it possible to change the order of the form fields. The workflow is as follows:

  1. Click on the plus button to add one or more tabs (for example, a Region tab, as shown in the following screenshot).
  2. On the left-hand side of the dialog, select the field that you want to add to the form.
  3. On the right-hand side, select the tab to which you want to add the field.
  4. Click on the button with the icon of an arrow pointing to the right to add the selected field to the selected tab.
  5. You can reorder the fields in the form using the up and down arrow buttons or, as the name suggests, by dragging and dropping the fields up or down:
    Designing a feature form using drag and drop designer

Designing a feature form using a .ui file

This is the most advanced option. It enables you to use a Qt user interface designed using, for example, the Qt Designer software. This allows a great deal of freedom in designing the form layout and behavior.

Note

Creating .ui files is out of the scope of this book, but you can find more information about it at http://docs.qgis.org/2.2/en/docs/training_manual/create_vector_data/forms.html#hard-fa-creating-a-new-form.

Calculating new attribute values

If we want to change the attributes of multiple or all features in a layer, editing them manually usually isn't an option. This is what the Field calculator is good for. We can access it using the Open field calculator button in the attribute table, or by pressing Ctrl + I. In the Field calculator, we can choose to update only the selected features or update all the features in the layer. Besides updating an existing field, we can also create a new field. The function list is the same one that we explored when we selected features by expression. We can use any of the functions and variables in this list to populate a new field or update an existing one. Here are some example expressions that are often used:

  • We can create a sequential id column using the @row_number variable, which populates a column with row numbers, as shown in the following screenshot:
    Calculating new attribute values
  • Another common use case is calculating a line's length or a polygon's area using the $length and $area geometry functions, respectively
  • Similarly, we can get point coordinates using $x and $y
  • If we want to get the start point or end point of a line, we can use $x_at(0) and $y_at(0), or $x_at(-1) and $y_at(-1), respectively

An alternative to the Field calculator—especially if you already know the formula you want to use—is the field calculator bar, which you can find directly in the Attribute table dialog right below the toolbar. In the next screenshot, you can see an example that calculates the area of all census areas (use the New Field button to add a Decimal number field called CENSUSAREA first). This example uses a CASE WHENTHENEND expression to check whether the value of TYPE_2 is Census Area:

CASE WHEN TYPE_2 = 'Census Area' THEN $area / 27878400 END

Tip

An alternative solution would be to use the if() function instead. If you use the CENSUSAREA attribute as the third parameter (which defines the value that is returned if the condition evaluates to false), the expression will only update those rows in which TYPE_2 is Census Area and leave the other rows unchanged:

if(TYPE_2 = 'Census Area', $area / 27878400, CENSUSAREA)

Alternatively, you can use NULL as a third parameter which will overwrite all rows where TYPE_2 does not equal Census Area with NULL:

if(TYPE_2 = 'Census Area', $area / 27878400, NULL)

Enter the formula and click on the Update All button to execute it:

Calculating new attribute values

Since it is not possible to directly change a field data type in a Shapefile or SpatiaLite attribute table, the field calculator and calculator bar are also used to create new fields with the desired properties and then populate them with the values from the original column.