Table of Contents for
QGIS: Becoming a GIS Power User

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition QGIS: Becoming a GIS Power User by Alexander Bruy Published by Packt Publishing, 2017
  1. Cover
  2. Table of Contents
  3. QGIS: Becoming a GIS Power User
  4. QGIS: Becoming a GIS Power User
  5. QGIS: Becoming a GIS Power User
  6. Credits
  7. Preface
  8. What you need for this learning path
  9. Who this learning path is for
  10. Reader feedback
  11. Customer support
  12. 1. Module 1
  13. 1. Getting Started with QGIS
  14. Running QGIS for the first time
  15. Introducing the QGIS user interface
  16. Finding help and reporting issues
  17. Summary
  18. 2. Viewing Spatial Data
  19. Dealing with coordinate reference systems
  20. Loading raster files
  21. Loading data from databases
  22. Loading data from OGC web services
  23. Styling raster layers
  24. Styling vector layers
  25. Loading background maps
  26. Dealing with project files
  27. Summary
  28. 3. Data Creation and Editing
  29. Working with feature selection tools
  30. Editing vector geometries
  31. Using measuring tools
  32. Editing attributes
  33. Reprojecting and converting vector and raster data
  34. Joining tabular data
  35. Using temporary scratch layers
  36. Checking for topological errors and fixing them
  37. Adding data to spatial databases
  38. Summary
  39. 4. Spatial Analysis
  40. Combining raster and vector data
  41. Vector and raster analysis with Processing
  42. Leveraging the power of spatial databases
  43. Summary
  44. 5. Creating Great Maps
  45. Labeling
  46. Designing print maps
  47. Presenting your maps online
  48. Summary
  49. 6. Extending QGIS with Python
  50. Getting to know the Python Console
  51. Creating custom geoprocessing scripts using Python
  52. Developing your first plugin
  53. Summary
  54. 2. Module 2
  55. 1. Exploring Places – from Concept to Interface
  56. Acquiring data for geospatial applications
  57. Visualizing GIS data
  58. The basemap
  59. Summary
  60. 2. Identifying the Best Places
  61. Raster analysis
  62. Publishing the results as a web application
  63. Summary
  64. 3. Discovering Physical Relationships
  65. Spatial join for a performant operational layer interaction
  66. The CartoDB platform
  67. Leaflet and an external API: CartoDB SQL
  68. Summary
  69. 4. Finding the Best Way to Get There
  70. OpenStreetMap data for topology
  71. Database importing and topological relationships
  72. Creating the travel time isochron polygons
  73. Generating the shortest paths for all students
  74. Web applications – creating safe corridors
  75. Summary
  76. 5. Demonstrating Change
  77. TopoJSON
  78. The D3 data visualization library
  79. Summary
  80. 6. Estimating Unknown Values
  81. Interpolated model values
  82. A dynamic web application – OpenLayers AJAX with Python and SpatiaLite
  83. Summary
  84. 7. Mapping for Enterprises and Communities
  85. The cartographic rendering of geospatial data – MBTiles and UTFGrid
  86. Interacting with Mapbox services
  87. Putting it all together
  88. Going further – local MBTiles hosting with TileStream
  89. Summary
  90. 3. Module 3
  91. 1. Data Input and Output
  92. Finding geospatial data on your computer
  93. Describing data sources
  94. Importing data from text files
  95. Importing KML/KMZ files
  96. Importing DXF/DWG files
  97. Opening a NetCDF file
  98. Saving a vector layer
  99. Saving a raster layer
  100. Reprojecting a layer
  101. Batch format conversion
  102. Batch reprojection
  103. Loading vector layers into SpatiaLite
  104. Loading vector layers into PostGIS
  105. 2. Data Management
  106. Joining layer data
  107. Cleaning up the attribute table
  108. Configuring relations
  109. Joining tables in databases
  110. Creating views in SpatiaLite
  111. Creating views in PostGIS
  112. Creating spatial indexes
  113. Georeferencing rasters
  114. Georeferencing vector layers
  115. Creating raster overviews (pyramids)
  116. Building virtual rasters (catalogs)
  117. 3. Common Data Preprocessing Steps
  118. Converting points to lines to polygons and back – QGIS
  119. Converting points to lines to polygons and back – SpatiaLite
  120. Converting points to lines to polygons and back – PostGIS
  121. Cropping rasters
  122. Clipping vectors
  123. Extracting vectors
  124. Converting rasters to vectors
  125. Converting vectors to rasters
  126. Building DateTime strings
  127. Geotagging photos
  128. 4. Data Exploration
  129. Listing unique values in a column
  130. Exploring numeric value distribution in a column
  131. Exploring spatiotemporal vector data using Time Manager
  132. Creating animations using Time Manager
  133. Designing time-dependent styles
  134. Loading BaseMaps with the QuickMapServices plugin
  135. Loading BaseMaps with the OpenLayers plugin
  136. Viewing geotagged photos
  137. 5. Classic Vector Analysis
  138. Selecting optimum sites
  139. Dasymetric mapping
  140. Calculating regional statistics
  141. Estimating density heatmaps
  142. Estimating values based on samples
  143. 6. Network Analysis
  144. Creating a simple routing network
  145. Calculating the shortest paths using the Road graph plugin
  146. Routing with one-way streets in the Road graph plugin
  147. Calculating the shortest paths with the QGIS network analysis library
  148. Routing point sequences
  149. Automating multiple route computation using batch processing
  150. Matching points to the nearest line
  151. Creating a routing network for pgRouting
  152. Visualizing the pgRouting results in QGIS
  153. Using the pgRoutingLayer plugin for convenience
  154. Getting network data from the OSM
  155. 7. Raster Analysis I
  156. Using the raster calculator
  157. Preparing elevation data
  158. Calculating a slope
  159. Calculating a hillshade layer
  160. Analyzing hydrology
  161. Calculating a topographic index
  162. Automating analysis tasks using the graphical modeler
  163. 8. Raster Analysis II
  164. Calculating NDVI
  165. Handling null values
  166. Setting extents with masks
  167. Sampling a raster layer
  168. Visualizing multispectral layers
  169. Modifying and reclassifying values in raster layers
  170. Performing supervised classification of raster layers
  171. 9. QGIS and the Web
  172. Using web services
  173. Using WFS and WFS-T
  174. Searching CSW
  175. Using WMS and WMS Tiles
  176. Using WCS
  177. Using GDAL
  178. Serving web maps with the QGIS server
  179. Scale-dependent rendering
  180. Hooking up web clients
  181. Managing GeoServer from QGIS
  182. 10. Cartography Tips
  183. Using Rule Based Rendering
  184. Handling transparencies
  185. Understanding the feature and layer blending modes
  186. Saving and loading styles
  187. Configuring data-defined labels
  188. Creating custom SVG graphics
  189. Making pretty graticules in any projection
  190. Making useful graticules in printed maps
  191. Creating a map series using Atlas
  192. 11. Extending QGIS
  193. Defining custom projections
  194. Working near the dateline
  195. Working offline
  196. Using the QspatiaLite plugin
  197. Adding plugins with Python dependencies
  198. Using the Python console
  199. Writing Processing algorithms
  200. Writing QGIS plugins
  201. Using external tools
  202. 12. Up and Coming
  203. Preparing LiDAR data
  204. Opening File Geodatabases with the OpenFileGDB driver
  205. Using Geopackages
  206. The PostGIS Topology Editor plugin
  207. The Topology Checker plugin
  208. GRASS Topology tools
  209. Hunting for bugs
  210. Reporting bugs
  211. Bibliography
  212. Index

Combining raster and vector data

Some analyses require a combination of raster and vector data. In the following exercises, we will use both raster and vector datasets to explain how to convert between these different data types, how to access layer and zonal statistics, and finally how to create a raster heatmap from points.

Converting between rasters and vectors

Tools for converting between raster and vector formats can be accessed by going to Raster | Conversion. These tools are called Rasterize (Vector to raster) and Polygonize (Raster to vector). Like the raster clipper tool that we used before, these tools are also based on GDAL and display the command at the bottom of the dialog.

Polygonize converts a raster into a polygon layer. Depending on the size of the raster, the conversion can take some time. When the process is finished, QGIS will notify us with a popup. For a quick test, we can, for example, convert the reclassified landcover raster to polygons. The resulting vector polygon layer contains multiple polygonal features with a single attribute, which we name lc; it depends on the original raster value, as shown in the following screenshot:

Converting between rasters and vectors

Using the Rasterize tool is very similar to using the Polygonize tool. The only difference is that we get to specify the size of the resulting raster in pixels/cells. We can also specify the attribute field, which will provide input for the raster cell value, as shown in the next screenshot. In this case, the cat attribute of our alaska.shp dataset is rather meaningless, but you get the idea of how the tool works:

Converting between rasters and vectors

Accessing raster and vector layer statistics

Whenever we get a new dataset, it is useful to examine the layer statistics to get an idea of the data it contains, such as the minimum and maximum values, number of features, and much more. QGIS offers a variety of tools to explore these values.

Raster layer statistics are readily available in the Layer Properties dialog, specifically in the following tabs:

  • Metadata: This tab shows the minimum and maximum cell values as well as the mean and the standard deviation of the cell values.
  • Histogram: This tab presents the distribution of raster values. Use the mouse to zoom into the histogram to see the details. For example, the following screenshot shows the zoomed-in version of the histogram for our landcover dataset:
    Accessing raster and vector layer statistics

For vector layers, we can get summary statistics using two tools in Vector | Analysis Tools:

  • Basics statistics is very useful for numerical fields. It calculates parameters such as mean and median, min and max, the feature count n, the number of unique values, and so on for all features of a layer or for selected features only.
  • List unique values is useful for getting all unique values of a certain field.

In both tools, we can easily copy the results using Ctrl + C and paste them in a text file or spreadsheet. The following image shows examples of exploring the contents of our airports sample dataset:

Accessing raster and vector layer statistics

An alternative to the Basics statistics tool is the Statistics Panel, which you can activate by going to View | Panels | Statistics Panel. As shown in the following screenshot, this panel can be customized to show exactly those statistics that you are interested in:

Accessing raster and vector layer statistics

Computing zonal statistics

Instead of computing raster statistics for the entire layer, it is sometimes necessary to compute statistics for selected regions. This is what the Zonal statistics plugin is good for. This plugin is installed by default and can be enabled in the Plugin Manager.

For example, we can compute elevation statistics for areas around each airport using srtm_05_01.tif and airports.shp from our sample data:

  1. First, we create the analysis areas around each airport using the Vector | Geoprocessing Tools | Buffer(s) tool and a buffer size of 10,000 feet.
  2. Before we can use the Zonal statistics plugin, it is important to notice that the buffer layer and the elevation raster use two different CRS (short for Coordinate Reference System). If we simply went ahead, the resulting statistics would be either empty or wrong. Therefore, we need to reproject the buffer layer to the raster CRS (WGS84 EPSG:4326, for details on how to change a layer CRS, see Chapter 3, Data Creation and Editing, in the Reprojecting and converting vector and raster data section).
  3. Now we can compute the statistics for the analysis areas using the Zonal Statistics tool, which can be accessed by going to Raster | Zonal statistics. Here, we can configure the desired Output column prefix (in our example, we have chosen elev, which is short for elevation) and the Statistics to calculate (for example, Mean, Minimum, and Maximum), as shown in the following screenshot:
    Computing zonal statistics
  4. After you click on OK, the selected statistics are appended to the polygon layer attribute table, as shown in the following screenshot. We can see that Big Mountain AFS is the airport with the highest mean elevation among the four airports that fall within the extent of our elevation raster:
    Computing zonal statistics

Creating a heatmap from points

Heatmaps are great for visualizing a distribution of points. To create them, QGIS provides a simple-to-use Heatmap Plugin, which we have to activate in the Plugin Manager, and then we can access it by going to Raster | Heatmap | Heatmap. The plugin offers different Kernel shapes to choose from. The kernel is a moving window of a specific size and shape that moves over an area of points to calculate their local density. Additionally, the plugin allows us to control the output heatmap raster size in cells (using the Rows and Columns settings) as well as the cell size.

Note

Radius determines the distance around each point at which the point will have an influence. Therefore, smaller radius values result in heatmaps that show finer and smaller details, while larger values result in smoother heatmaps with fewer details.

Additionally, Kernel shape controls the rate at which the influence of a point decreases with increasing distance from the point. The kernel shapes that are available in the Heatmap plugin are listed in the following screenshot. For example, a Triweight kernel creates smaller hotspots than the Epanechnikov kernel. For formal definitions of the kernel functions, refer to http://en.wikipedia.org/wiki/Kernel_(statistics).

The following screenshot shows us how to create a heatmap of our airports.shp sample with a kernel radius of 300,000 layer units, which in the case of our airport data is in feet:

Creating a heatmap from points

By default, the heatmap output will be rendered using the Singleband gray render type (with low raster values in black and high values in white). To change the style to something similar to what you saw in the previous screenshot, you can do the following:

  1. Change the heatmap raster layer render type to Singleband pseudocolor.
  2. In the Generate new color map section on the right-hand side of the dialog, select a color map you like, for example, the PuRd color map, as shown in the next screenshot.
  3. You can enter the Min and Max values for the color map manually, or have them computed by clicking on Load in the Load min/max values section.

    Tip

    When loading the raster min/max values, keep an eye on the settings. To get the actual min/max values of a raster layer, enable Min/max, Full Extent, and Actual (slower) Accuracy. If you only want the min/max values of the raster section that is currently displayed on the map, use Current Extent instead.

  4. Click on Classify to add the color map classes to the list on the left-hand side of the dialog.
  5. Optionally, we can change the color of the first entry (for value 0) to white (by double-clicking on the color in the list) to get a smooth transition from the white map background to our heatmap.
    Creating a heatmap from points