Table of Contents for
QGIS: Becoming a GIS Power User

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition QGIS: Becoming a GIS Power User by Alexander Bruy Published by Packt Publishing, 2017
  1. Cover
  2. Table of Contents
  3. QGIS: Becoming a GIS Power User
  4. QGIS: Becoming a GIS Power User
  5. QGIS: Becoming a GIS Power User
  6. Credits
  7. Preface
  8. What you need for this learning path
  9. Who this learning path is for
  10. Reader feedback
  11. Customer support
  12. 1. Module 1
  13. 1. Getting Started with QGIS
  14. Running QGIS for the first time
  15. Introducing the QGIS user interface
  16. Finding help and reporting issues
  17. Summary
  18. 2. Viewing Spatial Data
  19. Dealing with coordinate reference systems
  20. Loading raster files
  21. Loading data from databases
  22. Loading data from OGC web services
  23. Styling raster layers
  24. Styling vector layers
  25. Loading background maps
  26. Dealing with project files
  27. Summary
  28. 3. Data Creation and Editing
  29. Working with feature selection tools
  30. Editing vector geometries
  31. Using measuring tools
  32. Editing attributes
  33. Reprojecting and converting vector and raster data
  34. Joining tabular data
  35. Using temporary scratch layers
  36. Checking for topological errors and fixing them
  37. Adding data to spatial databases
  38. Summary
  39. 4. Spatial Analysis
  40. Combining raster and vector data
  41. Vector and raster analysis with Processing
  42. Leveraging the power of spatial databases
  43. Summary
  44. 5. Creating Great Maps
  45. Labeling
  46. Designing print maps
  47. Presenting your maps online
  48. Summary
  49. 6. Extending QGIS with Python
  50. Getting to know the Python Console
  51. Creating custom geoprocessing scripts using Python
  52. Developing your first plugin
  53. Summary
  54. 2. Module 2
  55. 1. Exploring Places – from Concept to Interface
  56. Acquiring data for geospatial applications
  57. Visualizing GIS data
  58. The basemap
  59. Summary
  60. 2. Identifying the Best Places
  61. Raster analysis
  62. Publishing the results as a web application
  63. Summary
  64. 3. Discovering Physical Relationships
  65. Spatial join for a performant operational layer interaction
  66. The CartoDB platform
  67. Leaflet and an external API: CartoDB SQL
  68. Summary
  69. 4. Finding the Best Way to Get There
  70. OpenStreetMap data for topology
  71. Database importing and topological relationships
  72. Creating the travel time isochron polygons
  73. Generating the shortest paths for all students
  74. Web applications – creating safe corridors
  75. Summary
  76. 5. Demonstrating Change
  77. TopoJSON
  78. The D3 data visualization library
  79. Summary
  80. 6. Estimating Unknown Values
  81. Interpolated model values
  82. A dynamic web application – OpenLayers AJAX with Python and SpatiaLite
  83. Summary
  84. 7. Mapping for Enterprises and Communities
  85. The cartographic rendering of geospatial data – MBTiles and UTFGrid
  86. Interacting with Mapbox services
  87. Putting it all together
  88. Going further – local MBTiles hosting with TileStream
  89. Summary
  90. 3. Module 3
  91. 1. Data Input and Output
  92. Finding geospatial data on your computer
  93. Describing data sources
  94. Importing data from text files
  95. Importing KML/KMZ files
  96. Importing DXF/DWG files
  97. Opening a NetCDF file
  98. Saving a vector layer
  99. Saving a raster layer
  100. Reprojecting a layer
  101. Batch format conversion
  102. Batch reprojection
  103. Loading vector layers into SpatiaLite
  104. Loading vector layers into PostGIS
  105. 2. Data Management
  106. Joining layer data
  107. Cleaning up the attribute table
  108. Configuring relations
  109. Joining tables in databases
  110. Creating views in SpatiaLite
  111. Creating views in PostGIS
  112. Creating spatial indexes
  113. Georeferencing rasters
  114. Georeferencing vector layers
  115. Creating raster overviews (pyramids)
  116. Building virtual rasters (catalogs)
  117. 3. Common Data Preprocessing Steps
  118. Converting points to lines to polygons and back – QGIS
  119. Converting points to lines to polygons and back – SpatiaLite
  120. Converting points to lines to polygons and back – PostGIS
  121. Cropping rasters
  122. Clipping vectors
  123. Extracting vectors
  124. Converting rasters to vectors
  125. Converting vectors to rasters
  126. Building DateTime strings
  127. Geotagging photos
  128. 4. Data Exploration
  129. Listing unique values in a column
  130. Exploring numeric value distribution in a column
  131. Exploring spatiotemporal vector data using Time Manager
  132. Creating animations using Time Manager
  133. Designing time-dependent styles
  134. Loading BaseMaps with the QuickMapServices plugin
  135. Loading BaseMaps with the OpenLayers plugin
  136. Viewing geotagged photos
  137. 5. Classic Vector Analysis
  138. Selecting optimum sites
  139. Dasymetric mapping
  140. Calculating regional statistics
  141. Estimating density heatmaps
  142. Estimating values based on samples
  143. 6. Network Analysis
  144. Creating a simple routing network
  145. Calculating the shortest paths using the Road graph plugin
  146. Routing with one-way streets in the Road graph plugin
  147. Calculating the shortest paths with the QGIS network analysis library
  148. Routing point sequences
  149. Automating multiple route computation using batch processing
  150. Matching points to the nearest line
  151. Creating a routing network for pgRouting
  152. Visualizing the pgRouting results in QGIS
  153. Using the pgRoutingLayer plugin for convenience
  154. Getting network data from the OSM
  155. 7. Raster Analysis I
  156. Using the raster calculator
  157. Preparing elevation data
  158. Calculating a slope
  159. Calculating a hillshade layer
  160. Analyzing hydrology
  161. Calculating a topographic index
  162. Automating analysis tasks using the graphical modeler
  163. 8. Raster Analysis II
  164. Calculating NDVI
  165. Handling null values
  166. Setting extents with masks
  167. Sampling a raster layer
  168. Visualizing multispectral layers
  169. Modifying and reclassifying values in raster layers
  170. Performing supervised classification of raster layers
  171. 9. QGIS and the Web
  172. Using web services
  173. Using WFS and WFS-T
  174. Searching CSW
  175. Using WMS and WMS Tiles
  176. Using WCS
  177. Using GDAL
  178. Serving web maps with the QGIS server
  179. Scale-dependent rendering
  180. Hooking up web clients
  181. Managing GeoServer from QGIS
  182. 10. Cartography Tips
  183. Using Rule Based Rendering
  184. Handling transparencies
  185. Understanding the feature and layer blending modes
  186. Saving and loading styles
  187. Configuring data-defined labels
  188. Creating custom SVG graphics
  189. Making pretty graticules in any projection
  190. Making useful graticules in printed maps
  191. Creating a map series using Atlas
  192. 11. Extending QGIS
  193. Defining custom projections
  194. Working near the dateline
  195. Working offline
  196. Using the QspatiaLite plugin
  197. Adding plugins with Python dependencies
  198. Using the Python console
  199. Writing Processing algorithms
  200. Writing QGIS plugins
  201. Using external tools
  202. 12. Up and Coming
  203. Preparing LiDAR data
  204. Opening File Geodatabases with the OpenFileGDB driver
  205. Using Geopackages
  206. The PostGIS Topology Editor plugin
  207. The Topology Checker plugin
  208. GRASS Topology tools
  209. Hunting for bugs
  210. Reporting bugs
  211. Bibliography
  212. Index

Styling vector layers

When we load vector layers, QGIS renders them using a default style and a random color. Of course, we want to customize these styles to better reflect our data. In the following exercises, we will style point, line, and polygon layers, and you will also get accustomed to the most common vector styling options.

Regardless of the layer's geometry type, we always find a drop-down list with the available style options in the top-left corner of the Style dialog. The following style options are available for vector layers:

  • Single Symbol: This is the simplest option. When we use a Single Symbol style, all points are displayed with the same symbol.
  • Categorized: This is the style of choice if a layer contains points of different categories, for example, a layer that contains locations of different animal sightings.
  • Graduated: This style is great if we want to visualize numerical values, for example, temperature measurements.
  • Rule-based: This is the most advanced option. Rule-based styles are very flexible because they allow us to write multiple rules for one layer.
  • Point displacement: This option is available only for point layers. These styles are useful if you need to visualize point layers with multiple points at the same coordinates, for example, students of a school living at the same address.
  • Inverted polygons: This option is available for polygon layers only. By using this option, the defined symbology will be applied to the area outside the polygon borders instead of filling the area inside the polygon.
  • Heatmap: This option is available only for point layers. It enables us to create a dynamic heatmap style.
  • 2.5D: This option is available only for polygon layers. It enables us to create extruded polygons in 2.5 dimensions.

Creating point styles – an example of an airport style

Let's get started with a point layer! Load airport.shp from your sample data. In the top-left corner of the Style dialog, below the drop-down list, we find the symbol preview. Below this, there is a list of symbol layers that shows us the different layers the symbol consists of. On the right-hand side, we find options for the symbol size and size units, color and transparency, as well as rotation. Finally, the bottom-right area contains a preview area with saved symbols.

Point layers are, by default, displayed using a simple circle symbol. We want to use a symbol of an airplane instead. To change the symbol, select the Simple marker entry in the symbol layers list on the left-hand side of the dialog. Notice how the right-hand side of the dialog changes. We can now see the options available for simple markers: Colors, Size, Rotation, Form, and so on. However, we are not looking for circles, stars, or square symbols—we want an airplane. That's why we need to change the Symbol layer type option from Simple marker to SVG marker. Many of the options are still similar, but at the bottom, we now find a selection of SVG images that we can choose from. Scroll through the list and pick the airplane symbol, as shown in the following screenshot:

Creating point styles – an example of an airport style

Before we move on to styling lines, let's take a look at the other symbol layer types for points, which include the following:

  • Simple marker: This includes geometric forms such as circles, stars, and squares
  • Font marker: This provides access to your symbol fonts
  • SVG marker: Each QGIS installation comes with a collection of default SVG symbols; add your own folders that contain SVG images by going to Settings | Options | System | SVG Paths
  • Ellipse marker: This includes customizable ellipses, rectangles, crosses, and triangles
  • Vector Field marker: This is a customizable vector-field visualization tool
  • Geometry Generator: This enables us to manipulate geometries and even create completely new geometries using the built-in expression engine

Simple marker layers can have different geometric forms, sizes, outlines, and angles (orientation), as shown in the following screenshot, where we create a red square without an outline (using the No Pen option):

Creating point styles – an example of an airport style

Font marker layers are useful for adding letters or other symbols from fonts that are installed on your computer. This screenshot, for example, shows how to add the yin-and-yang character from the Wingdings font:

Creating point styles – an example of an airport style

Ellipse marker layers make it possible to draw different ellipses, rectangles, crosses, and triangles, where both the width and height can be controlled separately. This symbol layer type is especially useful when combined with data-defined overrides, which we will discuss later. The following screenshot shows how to create an ellipse that is 5 millimeters long, 2 millimeters high, and rotated by 45 degrees:

Creating point styles – an example of an airport style

Creating line styles – an example of river or road styles

In this exercise, we create a river style for the majriver.shp file in our sample data. The goal is to create a line style with two colors: a fill color for the center of the line and an outline color. This technique is very useful because it can also be used to create road styles.

To create such a style, we combine two simple lines. The default symbol is one simple line. Click on the green + symbol located below the symbol layers list in the bottom-left corner to add another simple line. The lower line will be our outline and the upper one will be the fill. Select the upper simple line and change the color to blue and the width to 0.3 millimeters. Next, select the lower simple line and change its color to gray and width to 0.6 millimeters, slightly wider than the other line. Check the preview and click on Apply to test how the style looks when applied to the river layer.

You will notice that the style doesn't look perfect yet. This is because each line feature is drawn separately, one after the other, and this leads to a rather disconnected appearance. Luckily, this is easy to fix; we only need to enable the so-called symbol levels. To do this, select the Line entry in the symbol layers list and tick the checkbox in the Symbol Levels dialog of the Advanced section (the button in the bottom-right corner of the style dialog), as shown in the following screenshot. Click on Apply to test the results.

Creating line styles – an example of river or road styles

Before we move on to styling polygons, let's take a look at the other symbol layer types for lines, which include the following:

  • Simple line: This is a solid or dashed line
  • Marker line: This line is made up of point markers located at line vertices or at regular intervals
  • Geometry Generator: This enables us to manipulate geometries and even create completely new geometries using the built-in expression engine.

A common use case for Marker line symbol layers are train track symbols; they often feature repeating perpendicular lines, which are abstract representations of railway sleepers. The following screenshot shows how we can create a style like this by adding a marker line on top of two simple lines:

Creating line styles – an example of river or road styles

Another common use case for Marker line symbol layers is arrow symbols. The following screenshot shows how we can create a simple arrow by combining Simple line and Marker line. The key to creating an arrow symbol is to specify that Marker placement should be last vertex only. Then we only need to pick a suitable arrow head marker and the arrow symbol is ready.

Creating line styles – an example of river or road styles

Tip

Whenever we create a symbol that we might want to reuse in other maps, we can save it by clicking on the Save button under the symbol preview area. We can assign a name to the new symbol, and after we save it, it will be added to the saved symbols preview area on the right-hand side.

Creating polygon styles – an example of a landmass style

In this exercise, we will create a style for the alaska.shp file. The goal is to create a simple fill with a blue halo. As in the previous river style example, we will combine two symbol layers to create this style: a Simple fill layer that defines the main fill color (white) with a thin border (in gray), and an additional Simple line outline layer for the (light blue) halo. The halo should have nice rounded corners. To achieve these, change the Join style option of the Simple line symbol layer to Round. Similar to the previous example, we again enable symbol levels; to prevent this landmass style from blocking out the background map, we select the Multiply blending mode, as shown in the following screenshot:

Creating polygon styles – an example of a landmass style

Before we move on, let's take a look at the other symbol layer types for polygons, which include the following:

  • Simple fill: This defines the fill and outline colors as well as the basic fill styles
  • Centroid fill: This allows us to put point markers at the centers of polygons
  • Line/Point pattern fill: This supports user-defined line and point patterns with flexible spacing
  • SVG fill: This fills the polygon using SVGs
  • Gradient fill: This allows us to fill polygons with linear, radial, or conical gradients
  • Shapeburst fill: This creates a gradient that starts at the polygon border and flows towards the center
  • Outline: Simple line or Marker line: This makes it possible to outline areas using line styles
  • Geometry Generator: This enables us to manipulate geometries and even create completely new geometries using the built-in expression engine.

A common use case for Point pattern fill symbol layers is topographic symbols for different vegetation types, which typically consist of a Simple fill layer and Point pattern fill, as shown in this screenshot:

Creating polygon styles – an example of a landmass style

When we design point pattern fills, we are, of course, not restricted to simple markers. We can use any other marker type. For example, the following screenshot shows how to create a polygon fill style with a Font marker pattern that shows repeating alien faces from the Webdings font:

Creating polygon styles – an example of a landmass style

As an alternative to simple fills with only one color, we can create Gradient fill symbol layers. Gradients can be defined by Two colors, as shown in the following screenshot, or by a Color ramp that can consist of many different colors. Usually, gradients run from the top to the bottom, but we can change this to, for example, make the gradient run from right to left by setting Angle to 270 degrees, as shown here:

Creating polygon styles – an example of a landmass style

The Shapeburst fill symbol layer type, also known as a "buffered" gradient fill, is often used to style water areas with a smooth gradient that flows from the polygon border inwards. The following screenshot shows a fixed-distance shading using the Shade to a set distance option. If we select Shade whole shape instead, the gradient will be drawn all the way from the polygon border to the center.

Creating polygon styles – an example of a landmass style