Table of Contents for
Your Code as a Crime Scene

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Your Code as a Crime Scene by Adam Tornhill Published by Pragmatic Bookshelf, 2015
  1. Title Page
  2. Your Code as a Crime Scene
  3. Your Code as a Crime Scene
  4. For the Best Reading Experience...
  5. Table of Contents
  6. Early praise for Your Code as a Crime Scene
  7. Foreword by Michael Feathers
  8. Acknowledgments
  9. Chapter 1: Welcome!
  10. About This Book
  11. Optimize for Understanding
  12. How to Read This Book
  13. Toward a New Approach
  14. Get Your Investigative Tools
  15. Part 1: Evolving Software
  16. Chapter 2: Code as a Crime Scene
  17. Meet the Problems of Scale
  18. Get a Crash Course in Offender Profiling
  19. Profiling the Ripper
  20. Apply Geographical Offender Profiling to Code
  21. Learn from the Spatial Movement of Programmers
  22. Find Your Own Hotspots
  23. Chapter 3: Creating an Offender Profile
  24. Mining Evolutionary Data
  25. Automated Mining with Code Maat
  26. Add the Complexity Dimension
  27. Merge Complexity and Effort
  28. Limitations of the Hotspot Criteria
  29. Use Hotspots as a Guide
  30. Dig Deeper
  31. Chapter 4: Analyze Hotspots in Large-Scale Systems
  32. Analyze a Large Codebase
  33. Visualize Hotspots
  34. Explore the Visualization
  35. Study the Distribution of Hotspots
  36. Differentiate Between True Problems and False Positives
  37. Chapter 5: Judge Hotspots with the Power of Names
  38. Know the Cognitive Advantages of Good Names
  39. Investigate a Hotspot by Its Name
  40. Understand the Limitations of Heuristics
  41. Chapter 6: Calculate Complexity Trends from Your Code’s Shape
  42. Complexity by the Visual Shape of Programs
  43. Learn About the Negative Space in Code
  44. Analyze Complexity Trends in Hotspots
  45. Evaluate the Growth Patterns
  46. From Individual Hotspots to Architectures
  47. Part 2: Dissect Your Architecture
  48. Chapter 7: Treat Your Code As a Cooperative Witness
  49. Know How Your Brain Deceives You
  50. Learn the Modus Operandi of a Code Change
  51. Use Temporal Coupling to Reduce Bias
  52. Prepare to Analyze Temporal Coupling
  53. Chapter 8: Detect Architectural Decay
  54. Support Your Redesigns with Data
  55. Analyze Temporal Coupling
  56. Catch Architectural Decay
  57. React to Structural Trends
  58. Scale to System Architectures
  59. Chapter 9: Build a Safety Net for Your Architecture
  60. Know What’s in an Architecture
  61. Analyze the Evolution on a System Level
  62. Differentiate Between the Level of Tests
  63. Create a Safety Net for Your Automated Tests
  64. Know the Costs of Automation Gone Wrong
  65. Chapter 10: Use Beauty as a Guiding Principle
  66. Learn Why Attractiveness Matters
  67. Write Beautiful Code
  68. Avoid Surprises in Your Architecture
  69. Analyze Layered Architectures
  70. Find Surprising Change Patterns
  71. Expand Your Analyses
  72. Part 3: Master the Social Aspects of Code
  73. Chapter 11: Norms, Groups, and False Serial Killers
  74. Learn Why the Right People Don’t Speak Up
  75. Understand Pluralistic Ignorance
  76. Witness Groupthink in Action
  77. Discover Your Team’s Modus Operandi
  78. Mine Organizational Metrics from Code
  79. Chapter 12: Discover Organizational Metrics in Your Codebase
  80. Let’s Work in the Communication Business
  81. Find the Social Problems of Scale
  82. Measure Temporal Coupling over Organizational Boundaries
  83. Evaluate Communication Costs
  84. Take It Step by Step
  85. Chapter 13: Build a Knowledge Map of Your System
  86. Know Your Knowledge Distribution
  87. Grow Your Mental Maps
  88. Investigate Knowledge in the Scala Repository
  89. Visualize Knowledge Loss
  90. Get More Details with Code Churn
  91. Chapter 14: Dive Deeper with Code Churn
  92. Cure the Disease, Not the Symptoms
  93. Discover Your Process Loss from Code
  94. Investigate the Disposal Sites of Killers and Code
  95. Predict Defects
  96. Time to Move On
  97. Chapter 15: Toward the Future
  98. Let Your Questions Guide Your Analysis
  99. Take Other Approaches
  100. Let’s Look into the Future
  101. Write to Evolve
  102. Appendix 1: Refactoring Hotspots
  103. Refactor Guided by Names
  104. Bibliography
  105. You May Be Interested In…

Let’s Look into the Future

Remember the old saying that what happens in a commit stays in a commit? Well, probably not, since I just made it up. But it’s nonetheless true, and that’s a problem.

Today’s tooling limits us to a commit as the smallest cohesive unit. If we knew what happened within a commit, we could take our analyses and predictions to a new level. Consider a temporal coupling analysis as an example. The analysis lets us identify modules that change together. But we cannot tell anything about the direction. Perhaps a change to module A is always followed by predictable modifications to B and C, never the other way around. That would be valuable information to have.

The next generation of tools has to go beyond version-control systems. We need tools that integrate with the rest of our development environment, and tools that record our every interaction with the code. Once we get there, we’ll be able to support the most important activities in programming: understanding and reading code. Let’s look at how we do that.

Support Code Reading

Most analyses focus on the design aspect of software. But reading code is a harder problem to solve. Let’s take inspiration from other areas.

Think about how online sites tend to work. You check out a product and immediately get presented with similar products. What if we could do the same for code? You open a file and get presented with a “programmers who read this code also looked at the UserStatistics class and eventually ended up modifying the ApplicationManager module. Twice.” Such reading recommendations are a natural next step to take.

Integrate Dynamic Information

Another promising area of research is to integrate dynamic analysis results into our development environments. We could use that information to present warnings for particular pieces of our codebase. Let’s look at an example.

You have learned that a high degree of parallel development leads to lower quality. What if we hooked the results of such an analysis into our code editors? When we start to modify a piece of code, we would be presented with a warning like “watch out—this code has been modified by three different programmers over the past day.”

To really work, you’d also need a time aspect. If you had a problem with parallel development in the past, you reacted, and then you fixed the problem, the warning should disappear automatically over time.

We already have all the building blocks we need. The next step is to integrate them with the rest of our workflow. Perhaps some of these new tools will be written by you?