Table of Contents for
Your Code as a Crime Scene

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Your Code as a Crime Scene by Adam Tornhill Published by Pragmatic Bookshelf, 2015
  1. Title Page
  2. Your Code as a Crime Scene
  3. Your Code as a Crime Scene
  4. For the Best Reading Experience...
  5. Table of Contents
  6. Early praise for Your Code as a Crime Scene
  7. Foreword by Michael Feathers
  8. Acknowledgments
  9. Chapter 1: Welcome!
  10. About This Book
  11. Optimize for Understanding
  12. How to Read This Book
  13. Toward a New Approach
  14. Get Your Investigative Tools
  15. Part 1: Evolving Software
  16. Chapter 2: Code as a Crime Scene
  17. Meet the Problems of Scale
  18. Get a Crash Course in Offender Profiling
  19. Profiling the Ripper
  20. Apply Geographical Offender Profiling to Code
  21. Learn from the Spatial Movement of Programmers
  22. Find Your Own Hotspots
  23. Chapter 3: Creating an Offender Profile
  24. Mining Evolutionary Data
  25. Automated Mining with Code Maat
  26. Add the Complexity Dimension
  27. Merge Complexity and Effort
  28. Limitations of the Hotspot Criteria
  29. Use Hotspots as a Guide
  30. Dig Deeper
  31. Chapter 4: Analyze Hotspots in Large-Scale Systems
  32. Analyze a Large Codebase
  33. Visualize Hotspots
  34. Explore the Visualization
  35. Study the Distribution of Hotspots
  36. Differentiate Between True Problems and False Positives
  37. Chapter 5: Judge Hotspots with the Power of Names
  38. Know the Cognitive Advantages of Good Names
  39. Investigate a Hotspot by Its Name
  40. Understand the Limitations of Heuristics
  41. Chapter 6: Calculate Complexity Trends from Your Code’s Shape
  42. Complexity by the Visual Shape of Programs
  43. Learn About the Negative Space in Code
  44. Analyze Complexity Trends in Hotspots
  45. Evaluate the Growth Patterns
  46. From Individual Hotspots to Architectures
  47. Part 2: Dissect Your Architecture
  48. Chapter 7: Treat Your Code As a Cooperative Witness
  49. Know How Your Brain Deceives You
  50. Learn the Modus Operandi of a Code Change
  51. Use Temporal Coupling to Reduce Bias
  52. Prepare to Analyze Temporal Coupling
  53. Chapter 8: Detect Architectural Decay
  54. Support Your Redesigns with Data
  55. Analyze Temporal Coupling
  56. Catch Architectural Decay
  57. React to Structural Trends
  58. Scale to System Architectures
  59. Chapter 9: Build a Safety Net for Your Architecture
  60. Know What’s in an Architecture
  61. Analyze the Evolution on a System Level
  62. Differentiate Between the Level of Tests
  63. Create a Safety Net for Your Automated Tests
  64. Know the Costs of Automation Gone Wrong
  65. Chapter 10: Use Beauty as a Guiding Principle
  66. Learn Why Attractiveness Matters
  67. Write Beautiful Code
  68. Avoid Surprises in Your Architecture
  69. Analyze Layered Architectures
  70. Find Surprising Change Patterns
  71. Expand Your Analyses
  72. Part 3: Master the Social Aspects of Code
  73. Chapter 11: Norms, Groups, and False Serial Killers
  74. Learn Why the Right People Don’t Speak Up
  75. Understand Pluralistic Ignorance
  76. Witness Groupthink in Action
  77. Discover Your Team’s Modus Operandi
  78. Mine Organizational Metrics from Code
  79. Chapter 12: Discover Organizational Metrics in Your Codebase
  80. Let’s Work in the Communication Business
  81. Find the Social Problems of Scale
  82. Measure Temporal Coupling over Organizational Boundaries
  83. Evaluate Communication Costs
  84. Take It Step by Step
  85. Chapter 13: Build a Knowledge Map of Your System
  86. Know Your Knowledge Distribution
  87. Grow Your Mental Maps
  88. Investigate Knowledge in the Scala Repository
  89. Visualize Knowledge Loss
  90. Get More Details with Code Churn
  91. Chapter 14: Dive Deeper with Code Churn
  92. Cure the Disease, Not the Symptoms
  93. Discover Your Process Loss from Code
  94. Investigate the Disposal Sites of Killers and Code
  95. Predict Defects
  96. Time to Move On
  97. Chapter 15: Toward the Future
  98. Let Your Questions Guide Your Analysis
  99. Take Other Approaches
  100. Let’s Look into the Future
  101. Write to Evolve
  102. Appendix 1: Refactoring Hotspots
  103. Refactor Guided by Names
  104. Bibliography
  105. You May Be Interested In…

Take It Step by Step

The dependencies between organizational aspects and system design are complex. As a consequence, the analysis in this chapter contains multiple steps. Let’s recap them:

images/Chp12_RecapSteps.png

Using the steps above, you’re now able to perform a basic analysis of communication problems and team productivity bottlenecks. When you find them, you need to react. Unfortunately, that’s the hard part because it depends on your specific organization and system.

One typical action is to rearrange the teams according to communication needs. Because those needs will change over the course of a longer project, you probably need to revisit these topics at regular intervals. Done right, such a rebalancing of project teams has been found to minimize communication overhead. (See The Effect of Communication Overhead on Software Maintenance Project Staffing [DHAQ07].)

This is what happened on the project I told you about at the beginning of the chapter. The project was supposed to deliver in three months. After one year of expensive and intense parallel development, the project was put on hold and analyzed, and the teams were reorganized. After that, we had fewer developers working on the code, and yet you won’t be surprised to learn that we got a productivity boost that lasted.

Sometimes it’s easier—and indeed more appropriate—to redesign the shared parts of the system to be more inline with the structure of the organization. This alternative is close to what Conway himself suggests in his classic paper as he concludes that “a design effort should be organized according to the need for communication” (source: How do committees invent? [Con68]). The techniques in this chapter are there to help you with this challenging task.

Toward a Communication Map

In this chapter, you learned that the number of authors behind a module correlates to the number of post-release defects in that code. We discussed how this is a consequence of the increased communication overhead that comes with parallel work. You also learned to investigate it yourself through an authors analysis.

We then looked at Conway’s law and how the way we organize our work impacts the code. You learned that your project organizations must align with the way the system is structured. You also got the basic tools to perform that analysis. During these analyses, we found a way to identify how much each developer has contributed in terms of code. We used this metric as a crude device to find the main developers.

With the analyses in this chapter, you’ll be able to spot many organizational problems that creep into your code. But we can do even better. In the next chapter, we’ll look at individual developer patterns. As you’ll see, those patterns make good predictors of defects. As a bonus, you’ll learn to build a complete knowledge map of your system. It’s a map that helps you plan, communicate, and estimate knowledge loss in case a core developer leaves. Let’s move on!