Various open source methodologies have been created to address the security assessment's needs. Using these assessment methodologies, one can strategically accomplish the time-critical and challenging task of assessing the system's security regardless of its size and complexity. Some methodologies focus on the technical aspect of security testing, while others focus on managerial criteria, and very few address both sides. The basic idea behind formalizing these methodologies with your assessment is to execute different types of tests step-by-step in order to accurately judge the security posture of a system.
Therefore, you will be introduced to several well-known security assessment methodologies that provide you with an extended view of the assessing network and application security by highlighting their key features and benefits. These include the following:
All of these testing frameworks and methodologies will assist security professionals in choosing the best strategy that adheres to their client's requirements. The first two provide you with general guidelines and methods of security testing for almost any type of information asset. The testing frameworks provided by Open Web Application Security Project (OWASP) and Web Application Security Consortium (WASC) primarily deal with the assessment of an application's security. Penetration Testing Execution Standard (PTES) will provide you with guidance on all types of penetration testing efforts. It is, however, important to note that security is an ongoing process in itself and a penetration test is a snapshot that details the security posture at the time of the test. Any minor change in the target environment may affect the entire process of security testing and could introduce errors in the final results. Additionally, adapting any single methodology does not necessarily provide you with a complete picture of the risk assessment process. It is left to the pentester to select the best strategy that could address the target testing criteria.
There are many security testing methodologies; choosing the best one requires a careful selection process through which one can determine the cost and effectiveness of the assessment. Thus, determining the right assessment strategy depends on several factors; the technical details provided about the target environment, resource availability, pentester's knowledge, business objectives, and regulatory concerns. From a business standpoint, efficiency and cost control is of extreme importance. Each of the following testing methodologies have very detailed and well-written documentation at their respective sites. We provide a brief summary of each, but to truly understand how they work in detail, you need to go to their respective websites and carefully study the documentation and implementation details provided by their creators.
Open Source Security Testing Methodology Manual (OSSTMM) (http://www.isecom.org/research/osstmm.html) is a recognized international standard created by Pete Herzog and developed by ISECOM for security testing and analysis. It's being used by many organizations in their day-to-day assessment cycle. From a technical perspective, its methodology is divided into four key groups—scope, channel, index, and vector. The scope defines a process of collecting information on all assets that operate in the target environment. A channel determines the type of communication and interaction with these assets, which can be physical, spectrum, and communication. All of these channels depict a unique set of security components that must be tested and verified during the assessment period. These components are comprised of physical security, human psychology, data networks, wireless communication medium, and telecommunication. The index is a method that is used to classify target assets that correspond to their particular identifications, such as MAC Address and IP Address. At the end, a vector concludes the direction through which an auditor can assess and analyze each functional asset. The whole process initiates a technical roadmap that evaluates the target environment thoroughly and is known as audit scope.
There are different forms of security testing that have been classified under the OSSTMM methodology, and their organization is presented within six standard security test types:
The technical assessment framework provided by OSSTMM is flexible and capable of deriving certain test cases that are logically divided into five security components of three consecutive channels, as mentioned previously. These test cases generally examine the target by assessing its access control security, process security, data controls, physical location, perimeter protection, security awareness level, trust level, fraud control protection, and many other procedures. The overall testing procedures focus on what is to be tested, how it should be tested, what tactics should be applied before, during, and after the test, and how to interpret and correlate the final results. Capturing the current state of the protection of a target system is considerably useful and invaluable. Thus, the OSSTMM methodology has introduced this terminology in the form of RAV (Risk Assessment Values). The basic function of RAV is to analyze the test results and compute the actual security value based on three factors, which are operational security, loss controls, and limitations. This final security value is known as RAV score. By using RAV score, an auditor can easily extract and define the milestones based on the current security posture to accomplish better protection. From a business perspective, RAV can optimize the amount of investment required on security and might help you with the justification of investing in more effective security solutions.
The following are the key features and benefits of OSSTMM:
Information Systems Security Assessment Framework (ISSAF) (www.oissg.org/issaf) is another open source security testing and analysis framework. Its framework has been categorized into several domains to address the security assessment in a logical order. Each of these domains assesses different parts of a target system and provides field inputs for the successful security engagement. By integrating its framework into a regular business lifecycle, it may provide the accuracy, completeness, and efficiency required to fulfill an organization's security testing requirements. ISSAF was developed to focus on two areas of security testing—technical and managerial. The technical side establishes the core set of rules and procedures to follow and create an adequate security assessment process, while the managerial side accomplishes engagement with the management and the best practices that should be followed throughout the testing process. It should be remembered that ISSAF defines the assessment as a process instead of an audit. As auditing requires a more established body to proclaim the necessary standards, its assessment framework does include the planning, assessment, treatment, accreditation, and maintenance phases. Each of these phases holds generic guidelines that are effective and flexible for any organizational structure.
The output is a combination of operational activities, security initiatives, and a complete listing of vulnerabilities that might exist in the target environment. The assessment process chooses the shortest path to reach the test deadline by analyzing its target against critical vulnerabilities that can be exploited with minimum effort.
ISSAF contains a rich set of technical assessment baselines to test the number of different technologies and processes. However, this has introduced another problem of maintenance to keep updating the framework in order to reflect new or updated technology assessment criteria. When compared to the OSSTMM methodology, these obsolescence issues affect the OSSTMM less, because the auditor is able to use the same methodology over the number of security engagements using a different set of tools and techniques. On the other hand, ISSAF also claims to be a broad framework with up-to-date information on security tools, best practices, and administrative concerns to complement the security assessment program. It can also be aligned with OSSTMM or any other similar testing methodology, thus combining the strengths of each other.
The following are the key features and benefits of ISSAF:
The Open Web Application Security Project (OWASP) open community brings its top 10 project forward to increase the awareness of application security. The project provides you with a necessary foundation to integrate security through secure coding principles and practices. OWASP also provides you with a wonderful testing guide as part of the OWASP Testing Project (https://www.owasp.org/index.php/OWASP_Testing_Project) that should be carefully reviewed to determine if this framework can assist you in your efforts.
The OWASP top 10 project categorizes the application security risks by evaluating the top attack vectors and security weaknesses in relation to their technical and business impact. While assessing the application, each of these risks demonstrates a generic attack method that is independent of the technology or platform being used. It also provides you with specific instructions on how to test, verify, and remediate each vulnerable part of an application. The OWASP top 10 mainly focuses on the high risk problem areas rather than addressing all the issues that surround the web application's security. However, some essential guidelines are available in the OWASP community for developers and security auditors to effectively manage the security of web applications:
The OWASP top 10 changes on a year-to-year basis. For detailed information, visit the project's website at https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project.
The following are the key features and benefits of OWASP:
Identifying the application's security risks requires a thorough and rigorous testing procedure, which can be followed throughout the development's lifecycle. WASC threat classification is another such open standard to assess the security of web applications. Similar to the OWASP standard, it is also classified into a number of attacks and weaknesses but addresses them in a much deeper fashion. Practicing this black art for identification and verification of threats that are hanging over the web application requires standard terminology to be followed, which can quickly adapt to the technology environment. This is where the WASC-TC comes in very handy. The overall standard is presented in three different views to help developers and security auditors understand the vision of web application security threats:
More details regarding Mitre's CWE can be found at https://cwe.mitre.org/.
More information regarding Mitre's CAPEC can be found at http://capec.mitre.org/.
SANS-CWE top 25 list can be found at http://www.sans.org/top25-software-errors/.
More details regarding WASC-TC and its views can be found at http://projects.webappsec.org/Threat-Classification.
The following are the key features and benefits of the WASC-TC:
The Penetration Testing Execution Standard (PTES) was created by some of the brightest minds and definitive experts in the penetration testing industry. It consists of seven phases of penetration testing and can be used to perform an effective penetration test on any environment. The details of the methodology can be found at http://www.pentest-standard.org/index.php/Main_Page.
The seven stages of penetration testing that are detailed by this standard are as follows (source: www.pentest-standard.org):
Each of these stages is provided in detail on the PTES site, along with specific mind maps that detail the steps required for each phase. This allows for the customization of the PTES standard to match the testing requirements of the environments that are being tested. More details about each step can be accessed by simply clicking on the item in the mind map.
The following are the key features and benefits of the PTES: