Table of Contents for
Learning Malware Analysis

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Learning Malware Analysis by Monnappa K A Published by Packt Publishing, 2018
  1. Learning Malware Analysis
  2. Title Page
  3. Copyright and Credits
  4. Learning Malware Analysis
  5. Dedication
  6. Packt Upsell
  7. Why subscribe?
  8. PacktPub.com
  9. Contributors
  10. About the author
  11. About the reviewers
  12. Packt is searching for authors like you
  13. Table of Contents
  14. Preface
  15. Who this book is for
  16. What this book covers
  17. To get the most out of this book
  18. Download the color images
  19. Conventions used
  20. Get in touch
  21. Reviews
  22. Introduction to Malware Analysis
  23. 1. What Is Malware?
  24. 2. What Is Malware Analysis?
  25. 3. Why Malware Analysis?
  26. 4. Types Of Malware Analysis
  27. 5. Setting Up The Lab Environment
  28. 5.1 Lab Requirements
  29. 5.2 Overview Of Lab Architecture
  30. 5.3 Setting Up And Configuring Linux VM
  31. 5.4 Setting Up And Configuring Windows VM
  32. 6. Malware Sources
  33. Summary
  34. Static Analysis
  35. 1. Determining the File Type
  36. 1.1 Identifying File Type Using Manual Method
  37. 1.2 Identifying File Type Using Tools
  38. 1.3 Determining File Type Using Python
  39. 2. Fingerprinting the Malware
  40. 2.1 Generating Cryptographic Hash Using Tools
  41. 2.2 Determining Cryptographic Hash in Python
  42. 3. Multiple Anti-Virus Scanning
  43. 3.1 Scanning the Suspect Binary with VirusTotal
  44. 3.2 Querying Hash Values Using VirusTotal Public API
  45. 4. Extracting Strings
  46. 4.1 String Extraction Using Tools
  47. 4.2 Decoding Obfuscated Strings Using FLOSS
  48. 5. Determining File Obfuscation
  49. 5.1 Packers and Cryptors
  50. 5.2 Detecting File Obfuscation Using Exeinfo PE
  51. 6. Inspecting PE Header Information
  52. 6.1 Inspecting File Dependencies and Imports
  53. 6.2  Inspecting Exports
  54. 6.3  Examining PE Section Table And Sections
  55. 6.4 Examining the Compilation Timestamp
  56. 6.5 Examining PE Resources
  57. 7. Comparing And Classifying The Malware
  58. 7.1 Classifying Malware Using Fuzzy Hashing
  59. 7.2 Classifying Malware Using Import Hash
  60. 7.3 Classifying Malware Using Section Hash
  61. 7.4 Classifying Malware Using YARA
  62. 7.4.1 Installing YARA
  63. 7.4.2 YARA Rule Basics
  64. 7.4.3 Running YARA
  65. 7.4.4 Applications of YARA
  66. Summary
  67. Dynamic Analysis
  68. 1. Lab Environment Overview
  69. 2. System And Network Monitoring
  70. 3. Dynamic Analysis (Monitoring) Tools
  71. 3.1 Process Inspection with Process Hacker
  72. 3.2 Determining System Interaction with Process Monitor
  73. 3.3 Logging System Activities Using Noriben
  74. 3.4 Capturing Network Traffic With Wireshark
  75. 3.5 Simulating Services with INetSim
  76. 4. Dynamic Analysis Steps
  77. 5. Putting it All Together: Analyzing a Malware Executable
  78. 5.1 Static Analysis of the Sample
  79. 5.2 Dynamic Analysis of the Sample
  80. 6. Dynamic-Link Library (DLL) Analysis
  81. 6.1 Why Attackers Use DLLs
  82. 6.2 Analyzing the DLL Using rundll32.exe
  83. 6.2.1 Working of rundll32.exe
  84. 6.2.2 Launching the DLL Using rundll32.exe
  85. Example 1 – Analyzing a DLL With No Exports
  86. Example 2 – Analyzing a DLL Containing Exports
  87. Example 3 – Analyzing a DLL Accepting Export Arguments
  88. 6.3 Analyzing a DLL with Process Checks
  89. Summary
  90. Assembly Language and Disassembly Primer
  91. 1. Computer Basics
  92. 1.1 Memory
  93. 1.1.1 How Data Resides In Memory
  94. 1.2 CPU
  95. 1.2.1 Machine Language
  96. 1.3 Program Basics
  97. 1.3.1 Program Compilation
  98. 1.3.2 Program On Disk
  99. 1.3.3 Program In Memory
  100. 1.3.4 Program Disassembly (From Machine code To Assembly code)
  101. 2. CPU Registers
  102. 2.1 General-Purpose Registers
  103. 2.2 Instruction Pointer (EIP)
  104. 2.3 EFLAGS Register
  105. 3. Data Transfer Instructions
  106. 3.1 Moving a Constant Into Register
  107. 3.2 Moving Values From Register To Register
  108. 3.3 Moving Values From Memory To Registers
  109. 3.4 Moving Values From Registers To Memory
  110. 3.5 Disassembly Challenge
  111. 3.6 Disassembly Solution
  112. 4. Arithmetic Operations
  113. 4.1 Disassembly Challenge
  114. 4.2 Disassembly Solution
  115. 5. Bitwise Operations
  116. 6. Branching And Conditionals
  117. 6.1 Unconditional Jumps
  118. 6.2 Conditional Jumps
  119. 6.3 If Statement
  120. 6.4 If-Else Statement
  121. 6.5 If-Elseif-Else Statement
  122. 6.6 Disassembly Challenge
  123. 6.7 Disassembly Solution
  124. 7. Loops
  125. 7.1 Disassembly Challenge
  126. 7.2 Disassembly Solution
  127. 8. Functions
  128. 8.1 Stack
  129. 8.2 Calling Function
  130. 8.3 Returning From Function
  131. 8.4 Function Parameters And Return Values
  132. 9. Arrays And Strings
  133. 9.1 Disassembly Challenge
  134. 9.2 Disassembly Solution
  135. 9.3 Strings
  136. 9.3.1 String Instructions
  137. 9.3.2 Moving From Memory To Memory (movsx)
  138. 9.3.3 Repeat Instructions (rep)
  139. 9.3.4 Storing Value From Register to Memory (stosx)
  140. 9.3.5 Loading From Memory to Register (lodsx)
  141. 9.3.6 Scanning Memory (scasx)
  142. 9.3.7 Comparing Values in Memory (cmpsx)
  143. 10. Structures
  144. 11. x64 Architecture
  145. 11.1 Analyzing 32-bit Executable On 64-bit Windows
  146. 12. Additional Resources
  147. 13. Summary
  148. Disassembly Using IDA
  149. 1. Code Analysis Tools
  150. 2. Static Code Analysis (Disassembly) Using IDA
  151. 2.1 Loading Binary in IDA
  152. 2.2 Exploring IDA Displays
  153. 2.2.1 Disassembly Window
  154. 2.2.2 Functions Window
  155. 2.2.3 Output Window
  156. 2.2.4 Hex View Window
  157. 2.2.5 Structures Window
  158. 2.2.6 Imports Window
  159. 2.2.7 Exports Window
  160. 2.2.8 Strings Window
  161. 2.2.9 Segments Window
  162. 2.3 Improving Disassembly Using IDA
  163. 2.3.1 Renaming Locations
  164. 2.3.2 Commenting in IDA
  165. 2.3.3 IDA Database
  166. 2.3.4 Formatting Operands
  167. 2.3.5 Navigating Locations
  168. 2.3.6 Cross-References
  169. 2.3.7 Listing All Cross-References
  170. 2.3.8 Proximity View And Graphs
  171. 3. Disassembling Windows API
  172. 3.1 Understanding Windows API
  173. 3.1.1 ANSI and Unicode API Functions
  174. 3.1.2 Extended API Functions
  175. 3.2 Windows API 32-Bit and 64-Bit Comparison
  176. 4. Patching Binary Using IDA
  177. 4.1 Patching Program Bytes
  178. 4.2 Patching Instructions
  179. 5. IDA Scripting and Plugins
  180. 5.1 Executing IDA Scripts
  181. 5.2 IDAPython
  182. 5.2.1 Checking The Presence Of CreateFile API
  183. 5.2.2 Code Cross-References to CreateFile Using IDAPython
  184. 5.3 IDA Plugins
  185. 6. Summary
  186. Debugging Malicious Binaries
  187. 1. General Debugging Concepts
  188. 1.1 Launching And Attaching To Processes
  189. 1.2 Controlling Process Execution
  190. 1.3 Interrupting a Program with Breakpoints
  191. 1.4 Tracing Program Execution
  192. 2. Debugging a Binary Using x64dbg
  193. 2.1 Launching a New Process in x64dbg
  194. 2.2 Attaching to an Existing Process Using x64dbg
  195. 2.3 x64dbg Debugger Interface
  196. 2.4 Controlling Process Execution Using x64dbg
  197. 2.5 Setting a Breakpoint in x64dbg
  198. 2.6 Debugging 32-bit Malware
  199. 2.7 Debugging 64-bit Malware
  200. 2.8 Debugging a Malicious DLL Using x64dbg
  201. 2.8.1 Using rundll32.exe to Debug the DLL in x64dbg
  202. 2.8.2 Debugging a DLL in a Specific Process
  203. 2.9 Tracing Execution in x64dbg
  204. 2.9.1 Instruction Tracing
  205. 2.9.2 Function Tracing
  206. 2.10 Patching in x64dbg
  207. 3. Debugging a Binary Using IDA
  208. 3.1 Launching a New Process in IDA
  209. 3.2 Attaching to an Existing Process Using IDA
  210. 3.3 IDA's Debugger Interface
  211. 3.4 Controlling Process Execution Using IDA
  212. 3.5 Setting a Breakpoint in IDA
  213. 3.6 Debugging Malware Executables
  214. 3.7 Debugging a Malicious DLL Using IDA
  215. 3.7.1 Debugging a DLL in a Specific Process
  216. 3.8 Tracing Execution Using IDA
  217. 3.9 Debugger Scripting Using IDAPython
  218. 3.9.1 Example – Determining Files Accessed by Malware
  219. 4. Debugging a .NET Application
  220. Summary
  221. Malware Functionalities and Persistence
  222. 1. Malware Functionalities
  223. 1.1 Downloader
  224. 1.2 Dropper
  225. 1.2.1 Reversing a 64-bit Dropper
  226. 1.3 Keylogger
  227. 1.3.1 Keylogger Using GetAsyncKeyState()
  228. 1.3.2 Keylogger Using SetWindowsHookEx()
  229. 1.4 Malware Replication Via Removable Media
  230. 1.5 Malware Command and Control (C2)
  231. 1.5.1 HTTP Command and Control
  232. 1.5.2 Custom Command and Control
  233. 1.6 PowerShell-Based Execution
  234. 1.6.1 PowerShell Command Basics
  235. 1.6.2 PowerShell Scripts And Execution Policy
  236. 1.6.2 Analyzing PowerShell Commands/Scripts
  237. 1.6.3 How Attackers Use PowerShell
  238. 2. Malware Persistence Methods
  239. 2.1 Running the Registry Key
  240. 2.2 Scheduled Tasks
  241. 2.3 Startup Folder
  242. 2.4 Winlogon Registry Entries
  243. 2.5 Image File Execution Options
  244. 2.6 Accessibility Programs
  245. 2.7 AppInit_DLLs
  246. 2.8 DLL Search Order Hijacking
  247. 2.9 COM hijacking
  248. 2.10 Service
  249. Summary
  250. Code Injection and Hooking
  251. 1. Virtual Memory
  252. 1.1 Process Memory Components (User Space)
  253. 1.2 Kernel Memory Contents (Kernel Space)
  254. 2. User Mode And Kernel Mode
  255. 2.1 Windows API Call Flow
  256. 3. Code Injection Techniques
  257. 3.1 Remote DLL Injection
  258. 3.2 DLL Injection Using APC (APC Injection)
  259. 3.3 DLL Injection Using SetWindowsHookEx()
  260. 3.4 DLL Injection Using The Application Compatibility Shim
  261. 3.4.1 Creating A Shim
  262. 3.4.2 Shim Artifacts
  263. 3.4.3 How Attackers Use Shims
  264. 3.4.4 Analyzing The Shim Database
  265. 3.5 Remote Executable/Shellcode Injection
  266. 3.6 Hollow Process Injection (Process Hollowing)
  267. 4. Hooking Techniques
  268. 4.1 IAT Hooking
  269. 4.2 Inline Hooking (Inline Patching)
  270. 4.3 In-memory Patching Using Shim
  271. 5. Additional Resources
  272. Summary
  273. Malware Obfuscation Techniques
  274. 1. Simple Encoding
  275. 1.1 Caesar Cipher
  276. 1.1.1 Working Of Caesar Cipher
  277. 1.1.2 Decrypting Caesar Cipher In Python
  278. 1.2 Base64 Encoding
  279. 1.2.1 Translating Data To Base64
  280. 1.2.2 Encoding And Decoding Base64
  281. 1.2.3 Decoding Custom Base64
  282. 1.2.4 Identifying Base64
  283. 1.3 XOR Encoding
  284. 1.3.1 Single Byte XOR
  285. 1.3.2 Finding XOR Key Through Brute-Force
  286. 1.3.3 NULL Ignoring XOR Encoding
  287. 1.3.4 Multi-byte XOR Encoding
  288. 1.3.5 Identifying XOR Encoding
  289. 2. Malware Encryption
  290. 2.1 Identifying Crypto Signatures Using Signsrch
  291. 2.2 Detecting Crypto Constants Using FindCrypt2
  292. 2.3 Detecting Crypto Signatures Using YARA
  293. 2.4 Decrypting In Python
  294. 3. Custom Encoding/Encryption
  295. 4. Malware Unpacking
  296. 4.1 Manual Unpacking
  297. 4.1.1 Identifying The OEP
  298. 4.1.2 Dumping Process Memory With Scylla
  299. 4.1.3 Fixing The Import Table
  300. 4.2 Automated Unpacking
  301. Summary
  302. Hunting Malware Using Memory Forensics
  303. 1. Memory Forensics Steps
  304. 2. Memory Acquisition
  305. 2.1 Memory Acquisition Using DumpIt
  306. 3. Volatility Overview
  307. 3.1 Installing Volatility
  308. 3.1.1 Volatility Standalone Executable
  309. 3.1.2 Volatility Source Package
  310. 3.2 Using Volatility
  311. 4. Enumerating Processes
  312. 4.1 Process Overview
  313. 4.1.1 Examining the _EPROCESS Structure
  314. 4.1.2 Understanding ActiveProcessLinks
  315. 4.2 Listing Processes Using psscan
  316. 4.2.1 Direct Kernel Object Manipulation (DKOM)
  317. 4.2.2 Understanding Pool Tag Scanning
  318. 4.3 Determining Process Relationships
  319. 4.4 Process Listing Using psxview
  320. 5. Listing Process Handles
  321. 6. Listing DLLs
  322. 6.1 Detecting a Hidden DLL Using ldrmodules
  323. 7. Dumping an Executable and DLL
  324. 8. Listing Network Connections and Sockets
  325. 9. Inspecting Registry
  326. 10. Investigating Service
  327. 11. Extracting Command History
  328. Summary
  329. Detecting Advanced Malware Using Memory Forensics
  330. 1. Detecting Code Injection
  331. 1.1 Getting VAD Information
  332. 1.2 Detecting Injected Code Using VAD
  333. 1.3 Dumping The Process Memory Region
  334. 1.4 Detecting Injected Code Using malfind
  335. 2. Investigating Hollow Process Injection
  336. 2.1 Hollow Process Injection Steps
  337. 2.2 Detecting Hollow Process Injection
  338. 2.3 Hollow Process Injection Variations
  339. 3. Detecting API Hooks
  340. 4. Kernel Mode Rootkits
  341. 5. Listing Kernel Modules
  342. 5.1 Listing Kernel Modules Using driverscan
  343. 6. I/O Processing
  344. 6.1 The Role Of The Device Driver
  345. 6.2 The Role Of The I/O Manager
  346. 6.3 Communicating With The Device Driver
  347. 6.4 I/O Requests To Layered Drivers
  348. 7. Displaying Device Trees
  349. 8. Detecting Kernel Space Hooking
  350. 8.1 Detecting SSDT Hooking
  351. 8.2 Detecting IDT Hooking
  352. 8.3 Identifying Inline Kernel Hooks
  353. 8.4 Detecting IRP Function Hooks
  354. 9. Kernel Callbacks And Timers
  355. Summary
  356. Other Books You May Enjoy
  357. Leave a review - let other readers know what you think

8.4 Detecting IRP Function Hooks

Instead of hooking the kernel API functions, a rootkit can modify the entries in the major function table (dispatch routine array) to point to a routine in the malicious module. For example, a rookit can inspect the data buffer that is written to a disk or network by overwriting the address corresponding to IRP_MJ_WRITE in a driver's major function table. The following diagram illustrates this concept:

Normally, the IRP handler functions of a driver point within their own module. For instance, the routine associated with IRP_MJ_WRITE of null.sys points to an address in null.sys, however, sometimes a driver will forward the handler function to another driver. The following is an example of the disk driver forwarding handler functions to CLASSPNP.SYS (the storage class device driver):

$ python vol.py -f win7_clean.vmem --profile=Win7SP1x64 driverirp -r disk
Volatility Foundation Volatility Framework 2.6
--------------------------------------------------
DriverName: Disk
DriverStart: 0xfffff88001962000
DriverSize: 0x16000
DriverStartIo: 0x0
0 IRP_MJ_CREATE 0xfffff88001979700 CLASSPNP.SYS
1 IRP_MJ_CREATE_NAMED_PIPE 0xfffff8000286d65c ntoskrnl.exe
2 IRP_MJ_CLOSE 0xfffff88001979700 CLASSPNP.SYS
3 IRP_MJ_READ 0xfffff88001979700 CLASSPNP.SYS
4 IRP_MJ_WRITE 0xfffff88001979700 CLASSPNP.SYS
5 IRP_MJ_QUERY_INFORMATION 0xfffff8000286d65c ntoskrnl.exe
[REMOVED]

To detect IRP hooks, you can focus on IRP handler functions that point to another driver, and since the driver can forward an IRP handler to another driver, you need to further investigate it to confirm the hook. If you are analyzing the rootkit in a lab setup, then you can list the IRP functions of all the drivers from a clean memory image and compare them with the IRP functions from the infected memory image for any modifications. In the following example, the ZeroAccess rootkit hooks the IRP functions of the disk driver and redirects them to the functions within a malicious module whose address is unknown (because the module is hidden):

DriverName: Disk
DriverStart: 0xba8f8000
DriverSize: 0x8e00
DriverStartIo: 0x0
0 IRP_MJ_CREATE 0xbabe2bde Unknown
1 IRP_MJ_CREATE_NAMED_PIPE 0xbabe2bde Unknown
2 IRP_MJ_CLOSE 0xbabe2bde Unknown
3 IRP_MJ_READ 0xbabe2bde Unknown
4 IRP_MJ_WRITE 0xbabe2bde Unknown
5 IRP_MJ_QUERY_INFORMATION 0xbabe2bde Unknown
[REMOVED]

The following output from the modscan displays the malicious driver (with a suspicious name) associated with ZeroAccess and the base address where it is loaded in the memory (which can be used to dump the driver to disk):

$ python vol.py -f zaccess_maxplus.vmem --profile=WinXPSP3x86 modscan | grep -i 0xbabe
Volatility Foundation Volatility Framework 2.6
0x0000000009aabf18 * 0xbabe0000 0x8000 \*

Some rootkits use indirect IRP hooking to avoid suspicion. In the following example, the Gapz Bootkit hooks the IRP_MJ_DEVICE_CONTROL of null.sys. At first glance, it may look like everything is normal because the IRP handler address corresponding to IRP_MJ_DEVICE_CONTROL points to within null.sys. Upon close inspection, you will notice the discrepancy; on a clean system, IRP_MJ_DEVICE_CONTROL points to the address in ntoskrnl.exe (nt!IopInvalidDeviceRequest). In this case, it is pointing to 0x880ee040 in null.sys. After disassembling the address 0x880ee040 (using the volshell plugin), you can see the jump to an address of 0x8518cad9, which is outside the range of null.sys:

$ python vol.py -f gapz.vmem --profile=Win7SP1x86 driverirp -r null
Volatility Foundation Volatility Framework 2.6
--------------------------------------------------
DriverName: Null
DriverStart: 0x880eb000
DriverSize: 0x7000
DriverStartIo: 0x0
0 IRP_MJ_CREATE 0x880ee07c Null.SYS
1 IRP_MJ_CREATE_NAMED_PIPE 0x828ee437 ntoskrnl.exe
2 IRP_MJ_CLOSE 0x880ee07c Null.SYS
3 IRP_MJ_READ 0x880ee07c Null.SYS
4 IRP_MJ_WRITE 0x880ee07c Null.SYS
5 IRP_MJ_QUERY_INFORMATION 0x880ee07c Null.SYS
[REMOVED]
13 IRP_MJ_FILE_SYSTEM_CONTROL 0x828ee437 ntoskrnl.exe
14 IRP_MJ_DEVICE_CONTROL 0x880ee040 Null.SYS
15 IRP_MJ_INTERNAL_DEVICE_CONTROL 0x828ee437 ntoskrnl.exe

$ python vol.py -f gapz.vmem --profile=Win7SP1x86 volshell
[REMOVED]
>>> dis(0x880ee040)
0x880ee040 8bff MOV EDI, EDI
0x880ee042 e992ea09fd JMP 0x8518cad9
0x880ee047 6818e10e88 PUSH DWORD 0x880ee118
For detailed information on the stealth techniques used by the Gapz Bootkit, read the whitepaper (https://www.welivesecurity.com/wp-content/uploads/2013/04/gapz-bootkit-whitepaper.pdf) titled "Mind the Gapz: The Most Complex Bootkit Ever Analyzed" by Eugene Rodionov and Aleksandr Matrosov.

As discussed so far, detecting standard hooking techniques is fairly straightforward. For instance, you can look for signs such as SSDT entries not pointing to ntoskrnl.exe/win32k.sys or IRP functions pointing to somewhere else, or jump instructions at the start of the function. To avoid such detections, an attacker can implement hooks while keeping call table entries within the range, or place the jump instructions deep inside the code. To do this, they need to rely on patching the system modules or third-party drivers. The problem with patching system modules is that Windows Kernel Patch Protection (PatchGuard) prevents patching call tables (such as SSDT or IDT) and the core system modules on 64-bit systems. For these reasons, attackers either use techniques that rely on bypassing these protection mechanisms (such as installing a Bootkit/exploiting kernel-mode vulnerabilities) or they use supported ways (which also work on 64-bit systems) to execute their malicious code to blend in with other legitimate drivers and reduce the risk of detection. In the next section, we will look at some of the supported techniques used by the rootkits.