Table of Contents for
Python Geospatial Development - Third Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Python Geospatial Development - Third Edition by Erik Westra Published by Packt Publishing, 2016
  1. Cover
  2. Table of Contents
  3. Python Geospatial Development Third Edition
  4. Python Geospatial Development Third Edition
  5. Credits
  6. About the Author
  7. About the Reviewer
  8. www.PacktPub.com
  9. Preface
  10. What you need for this book
  11. Who this book is for
  12. Conventions
  13. Reader feedback
  14. Customer support
  15. 1. Geospatial Development Using Python
  16. Geospatial development
  17. Applications of geospatial development
  18. Recent developments
  19. Summary
  20. 2. GIS
  21. GIS data formats
  22. Working with GIS data manually
  23. Summary
  24. 3. Python Libraries for Geospatial Development
  25. Dealing with projections
  26. Analyzing and manipulating Geospatial data
  27. Visualizing geospatial data
  28. Summary
  29. 4. Sources of Geospatial Data
  30. Sources of geospatial data in raster format
  31. Sources of other types of geospatial data
  32. Choosing your geospatial data source
  33. Summary
  34. 5. Working with Geospatial Data in Python
  35. Working with geospatial data
  36. Changing datums and projections
  37. Performing geospatial calculations
  38. Converting and standardizing units of geometry and distance
  39. Exercises
  40. Summary
  41. 6. Spatial Databases
  42. Spatial indexes
  43. Introducing PostGIS
  44. Setting up a database
  45. Using PostGIS
  46. Recommended best practices
  47. Summary
  48. 7. Using Python and Mapnik to Generate Maps
  49. Creating an example map
  50. Mapnik concepts
  51. Summary
  52. 8. Working with Spatial Data
  53. Designing and building the database
  54. Downloading and importing the data
  55. Implementing the DISTAL application
  56. Using DISTAL
  57. Summary
  58. 9. Improving the DISTAL Application
  59. Dealing with the scale problem
  60. Performance
  61. Summary
  62. 10. Tools for Web-based Geospatial Development
  63. A closer look at three specific tools and techniques
  64. Summary
  65. 11. Putting It All Together – a Complete Mapping System
  66. Designing the ShapeEditor
  67. Prerequisites
  68. Setting up the database
  69. Setting up the ShapeEditor project
  70. Defining the ShapeEditor's applications
  71. Creating the shared application
  72. Defining the data models
  73. Playing with the admin system
  74. Summary
  75. 12. ShapeEditor – Importing and Exporting Shapefiles
  76. Importing shapefiles
  77. Exporting shapefiles
  78. Summary
  79. 13. ShapeEditor – Selecting and Editing Features
  80. Editing features
  81. Adding features
  82. Deleting features
  83. Deleting shapefiles
  84. Using the ShapeEditor
  85. Further improvements and enhancements
  86. Summary
  87. Index

Summary

In this chapter, we learned about the various tools and techniques involved in developing geospatial applications that can be accessed via a web interface. We saw how web applications can be structured, learned that web application frameworks can simplify the process of building a web application, and saw how user-interface libraries make the job of implementing web applications much easier. We then looked at the concept of web services and saw how to implement a great-circle distance calculator as a web service. We also looked at how map rendering can be implemented as a web service and saw how tile caching can speed up the process of displaying maps within a web browser.

We next looked at the concept of slippy maps and saw how these can be built using a stack of off-the-shelf components. We also examined a number of common protocols for sharing and manipulating geospatial data.

Finally, we took an in-depth look at three particular tools and techniques that we will make use of in the remainder of this book: the Tile Map Service (TMS) protocol, the OpenLayers user interface library, and the GeoDjango web application framework.

In the next chapter, we will start to build a complete mapping application using PostGIS, Mapnik, and GeoDjango.