Table of Contents for
Practical UNIX and Internet Security, 3rd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Practical UNIX and Internet Security, 3rd Edition by Alan Schwartz Published by O'Reilly Media, Inc., 2003
  1. Cover
  2. Practical Unix & Internet Security, 3rd Edition
  3. A Note Regarding Supplemental Files
  4. Preface
  5. Unix “Security”?
  6. Scope of This Book
  7. Which Unix System?
  8. Conventions Used in This Book
  9. Comments and Questions
  10. Acknowledgments
  11. A Note to Would-Be Attackers
  12. I. Computer Security Basics
  13. 1. Introduction: Some Fundamental Questions
  14. What Is Computer Security?
  15. What Is an Operating System?
  16. What Is a Deployment Environment?
  17. Summary
  18. 2. Unix History and Lineage
  19. History of Unix
  20. Security and Unix
  21. Role of This Book
  22. Summary
  23. 3. Policies and Guidelines
  24. Planning Your Security Needs
  25. Risk Assessment
  26. Cost-Benefit Analysis and Best Practices
  27. Policy
  28. Compliance Audits
  29. Outsourcing Options
  30. The Problem with Security Through Obscurity
  31. Summary
  32. II. Security Building Blocks
  33. 4. Users, Passwords, and Authentication
  34. Logging in with Usernames and Passwords
  35. The Care and Feeding of Passwords
  36. How Unix Implements Passwords
  37. Network Account and Authorization Systems
  38. Pluggable Authentication Modules (PAM)
  39. Summary
  40. 5. Users, Groups, and the Superuser
  41. Users and Groups
  42. The Superuser (root)
  43. The su Command: Changing Who You Claim to Be
  44. Restrictions on the Superuser
  45. Summary
  46. 6. Filesystems and Security
  47. Understanding Filesystems
  48. File Attributes and Permissions
  49. chmod: Changing a File’s Permissions
  50. The umask
  51. SUID and SGID
  52. Device Files
  53. Changing a File’s Owner or Group
  54. Summary
  55. 7. Cryptography Basics
  56. Understanding Cryptography
  57. Symmetric Key Algorithms
  58. Public Key Algorithms
  59. Message Digest Functions
  60. Summary
  61. 8. Physical Security for Servers
  62. Planning for the Forgotten Threats
  63. Protecting Computer Hardware
  64. Preventing Theft
  65. Protecting Your Data
  66. Story: A Failed Site Inspection
  67. Summary
  68. 9. Personnel Security
  69. Background Checks
  70. On the Job
  71. Departure
  72. Other People
  73. Summary
  74. III. Network and Internet Security
  75. 10. Modems and Dialup Security
  76. Modems: Theory of Operation
  77. Modems and Security
  78. Modems and Unix
  79. Additional Security for Modems
  80. Summary
  81. 11. TCP/IP Networks
  82. Networking
  83. IP: The Internet Protocol
  84. IP Security
  85. Summary
  86. 12. Securing TCP and UDP Services
  87. Understanding Unix Internet Servers and Services
  88. Controlling Access to Servers
  89. Primary Unix Network Services
  90. Managing Services Securely
  91. Putting It All Together: An Example
  92. Summary
  93. 13. Sun RPC
  94. Remote Procedure Call (RPC)
  95. Secure RPC (AUTH_DES)
  96. Summary
  97. 14. Network-Based Authentication Systems
  98. Sun’s Network Information Service (NIS)
  99. Sun’s NIS+
  100. Kerberos
  101. LDAP
  102. Other Network Authentication Systems
  103. Summary
  104. 15. Network Filesystems
  105. Understanding NFS
  106. Server-Side NFS Security
  107. Client-Side NFS Security
  108. Improving NFS Security
  109. Some Last Comments on NFS
  110. Understanding SMB
  111. Summary
  112. 16. Secure Programming Techniques
  113. One Bug Can Ruin Your Whole Day . . .
  114. Tips on Avoiding Security-Related Bugs
  115. Tips on Writing Network Programs
  116. Tips on Writing SUID/SGID Programs
  117. Using chroot( )
  118. Tips on Using Passwords
  119. Tips on Generating Random Numbers
  120. Summary
  121. IV. Secure Operations
  122. 17. Keeping Up to Date
  123. Software Management Systems
  124. Updating System Software
  125. Summary
  126. 18. Backups
  127. Why Make Backups?
  128. Backing Up System Files
  129. Software for Backups
  130. Summary
  131. 19. Defending Accounts
  132. Dangerous Accounts
  133. Monitoring File Format
  134. Restricting Logins
  135. Managing Dormant Accounts
  136. Protecting the root Account
  137. One-Time Passwords
  138. Administrative Techniques for Conventional Passwords
  139. Intrusion Detection Systems
  140. Summary
  141. 20. Integrity Management
  142. The Need for Integrity
  143. Protecting Integrity
  144. Detecting Changes After the Fact
  145. Integrity-Checking Tools
  146. Summary
  147. 21. Auditing, Logging, and Forensics
  148. Unix Log File Utilities
  149. Process Accounting: The acct/pacct File
  150. Program-Specific Log Files
  151. Designing a Site-Wide Log Policy
  152. Handwritten Logs
  153. Managing Log Files
  154. Unix Forensics
  155. Summary
  156. V. Handling Security Incidents
  157. 22. Discovering a Break-in
  158. Prelude
  159. Discovering an Intruder
  160. Cleaning Up After the Intruder
  161. Case Studies
  162. Summary
  163. 23. Protecting Against Programmed Threats
  164. Programmed Threats: Definitions
  165. Damage
  166. Authors
  167. Entry
  168. Protecting Yourself
  169. Preventing Attacks
  170. Summary
  171. 24. Denial of Service Attacks and Solutions
  172. Types of Attacks
  173. Destructive Attacks
  174. Overload Attacks
  175. Network Denial of Service Attacks
  176. Summary
  177. 25. Computer Crime
  178. Your Legal Options After a Break-in
  179. Criminal Hazards
  180. Criminal Subject Matter
  181. Summary
  182. 26. Who Do You Trust?
  183. Can You Trust Your Computer?
  184. Can You Trust Your Suppliers?
  185. Can You Trust People?
  186. Summary
  187. VI. Appendixes
  188. A. Unix Security Checklist
  189. Preface
  190. Chapter 1: Introduction: Some Fundamental Questions
  191. Chapter 2: Unix History and Lineage
  192. Chapter 3: Policies and Guidelines
  193. Chapter 4: Users, Passwords, and Authentication
  194. Chapter 5: Users, Groups, and the Superuser
  195. Chapter 6: Filesystems and Security
  196. Chapter 7: Cryptography Basics
  197. Chapter 8: Physical Security for Servers
  198. Chapter 9: Personnel Security
  199. Chapter 10: Modems and Dialup Security
  200. Chapter 11: TCP/IP Networks
  201. Chapter 12: Securing TCP and UDP Services
  202. Chapter 13: Sun RPC
  203. Chapter 14: Network-Based Authentication Systems
  204. Chapter 15: Network Filesystems
  205. Chapter 16: Secure Programming Techniques
  206. Chapter 17: Keeping Up to Date
  207. Chapter 18: Backups
  208. Chapter 19: Defending Accounts
  209. Chapter 20: Integrity Management
  210. Chapter 21: Auditing, Logging, and Forensics
  211. Chapter 22: Discovering a Break-In
  212. Chapter 23: Protecting Against Programmed Threats
  213. Chapter 24: Denial of Service Attacks and Solutions
  214. Chapter 25: Computer Crime
  215. Chapter 26: Who Do You Trust?
  216. Appendix A: Unix Security Checklist
  217. Appendix B: Unix Processes
  218. Appendixes C, D, and E: Paper Sources, Electronic Sources, and Organizations
  219. B. Unix Processes
  220. About Processes
  221. Signals
  222. Controlling and Examining Processes
  223. Starting Up Unix and Logging In
  224. C. Paper Sources
  225. Unix Security References
  226. Other Computer References
  227. D. Electronic Resources
  228. Mailing Lists
  229. Web Sites
  230. Usenet Groups
  231. Software Resources
  232. E. Organizations
  233. Professional Organizations
  234. U.S. Government Organizations
  235. Emergency Response Organizations
  236. Index
  237. Index
  238. Index
  239. Index
  240. Index
  241. Index
  242. Index
  243. Index
  244. Index
  245. Index
  246. Index
  247. Index
  248. Index
  249. Index
  250. Index
  251. Index
  252. Index
  253. Index
  254. Index
  255. Index
  256. Index
  257. Index
  258. Index
  259. Index
  260. Index
  261. Index
  262. Index
  263. About the Authors
  264. Colophon
  265. Copyright

Can You Trust Your Computer?

For a few minutes, try thinking like a computer criminal. A few months ago, you were fired from Big Whammix, the large smokestack employer on the other side of town, and now you’re working for a competing company, Bigger Bammers. Your job at Bammers is corporate espionage; you’ve spent the last month trying to break into Big Whammix’s central mail server. Yesterday, you discovered a bug in a version of the web server software that Whammix is running, and you gained privileged access to the system.

What do you do now?

Your primary goal is to gain as much valuable corporate information as possible, and do so without leaving any evidence that would allow you to be caught. But you have a secondary goal of masking your steps so that your former employers at Whammix will never figure out that they have lost information.

Realizing that the hole in the Whammix web server might someday be plugged, you decide to create a new back door that you can use to gain access to the company’s computers in the future. One logical approach is to modify the computer’s SSH server to accept hidden passwords. Because the source code for sshd is widely available, this task is easy.

You want to hide evidence of your data collection, so you also patch the /bin/ls program. When the program is asked to list the contents of the directory in which you are storing your cracker tools and intercepted mail, it displays none of your files. You “fix” the computer’s MD5 utility so that it detects when it is computing the MD5 of one of the modified utilities, and returns the MD5 of the unmodified utility instead. Then you manipulate the system clock or edit the raw disk to set all the times in the inodes back to their original values to further cloak your modifications.

You’ll be connecting to the computer on a regular basis, so you also modify /usr/sbin/netstat so that it doesn’t display connections between the Big Whammix IP subnet and the subnet at Bigger Bammers. You may also modify the /usr/bin/ps and /usr/bin/who programs so that they don’t list users who are logged in via this special back door.

Content, you now spend the next five months periodically logging into the mail server at Big Whammix and making copies of all of the email directed to the marketing staff. You do so right up to the day that you leave your job at Bigger Bammers and move on to a new position at another firm. On your last day, you run a shell script that you have personally prepared that restores all of the programs on the hard disk to their original configuration. Then, as a parting gesture, your program introduces subtle modifications into the Big Whammix main accounting database.

Technological fiction? Hardly. By the middle of the 1990s, attacks against computers in which the system binaries were modified to prevent detection of the intruder had become commonplace. Once sophisticated attackers have gained superuser access, the usual way you discover their presence is if they make a mistake. Despite better intrusion detection and firewall technologies introduced in the late 1990s, the problem of “invisible” misuse continues to be common.

Harry’s Compiler

In the early days of the MIT Media Lab, there was a graduate student who was very unpopular with the other students in his lab. To protect his privacy, we’ll call the unpopular student “Harry.”

Harry was obnoxious and abrasive, and he wasn’t a very good programmer either. So the other students in the lab decided to play a trick on him. They modified the PL/I compiler on the computer that they all shared so that the program would determine the name of the person who was running it. If the person running the compiler was Harry, the program would run as usual, reporting syntax errors and the like, but it would occasionally, randomly, not produce a final output file.

This mischievous prank caused a myriad of troubles for Harry. He would make a minor change to his program, run it, and—occasionally—the program would run the same way as it did before he made his modification. He would fix bugs, but the bugs would still remain. But then, whenever he went for help, one of the other students in the lab would sit down at the terminal, log in, and everything would work properly.

Poor Harry. It was a cruel trick. Somehow, though, everybody forgot to tell him about it. He soon grew frustrated with the whole enterprise, and eventually left school.[358]

And you thought those random “bugs” in your system were there by accident?

Trusting Trust

Perhaps the definitive account of the problems inherent in computer security and trust is Ken Thompson’s article, “Reflections on Trusting Trust.”[359] Thompson describes a back door planted in an early research version of Unix.

The back door was a modification to the /bin/login program that would allow him to gain superuser access to the system at any time, even if his account had been deleted, by providing a predetermined username and password. While such a modification is easy to make, it’s also an easy one to detect by looking at the computer’s source code. So Thompson modified the computer’s C compiler to detect whether it was translating the login.c program. If so, then the additional code for the back door would automatically be inserted into the object-code stream, even though the code was not present in the original C source file.

Thompson could now have the login.c source inspected by his coworkers, compile the program, install the /bin/login executable, and yet be assured that the back door is firmly in place.

But what if somebody inspected the source code for the C compiler itself? Thompson thought of that case as well. He further modified the C compiler so that it would detect whether it was compiling the source code for itself. If so, the compiler would automatically insert the special login program recognition code. After one more round of compilation, Thompson was able to put all the original source code back in place.

Thompson’s experiment was like a magic trick. There was no back door in the login.c source file and no back door in the source code for the C compiler, and yet there was a back door in both the final compiler and in the login program. Abracadabra!

What hidden actions do your compiler and login programs perform?[360]

What the Superuser Can and Cannot Do

As these examples illustrate, technical expertise combined with superuser privileges on a computer is a powerful combination. Together, they let an attacker change the very nature of the computer’s operating system. An attacker can modify the system to create “hidden” directories that don’t show up under normal circumstances (if at all) and can change the system clock, making it look as if the files that he modified today were actually modified months ago. An attacker can also forge electronic mail. (Actually, anybody can forge electronic mail, but an attacker can do a better job of it.)

Of course, there are some things that an attacker cannot do, even if that attacker is a technical genius and has full access to your computer and its source code. An attacker cannot, for example, decrypt a message that has been encrypted with a perfect encryption algorithm. But he can alter the code to record the key the next time you type it. An attacker probably can’t alter your computer’s hardware to perform basic mathematical calculations a dozen times faster than it currently does, although there are few security implications to doing so. Most attackers can’t read the contents of a file after it’s been written over with another file unless they take apart your computer and take the hard disk to a laboratory. However, an attacker with privileges can alter your system so that deleted files are still accessible (to him).

In each case, how—and when—do you tell if the attack has occurred?

The “what-if” scenario can be taken to considerable lengths. Consider an attacker who is attempting to hide a modification in a computer’s /bin/login program. (See Table 26-1.)

Table 26-1. The “what-if” scenario

What the attacker might do after gaining root access

Your response

The attacker plants a back door in the /bin/login program to allow unauthorized access.

You use PGP to create a digital signature of all system programs. You check the signatures every day.

The attacker modifies the version of PGP that you are using so that it will report that the signature on /bin/login verifies, even if it doesn’t.

You copy /bin/login onto another computer before verifying it with a trusted copy of PGP.

The attacker modifies your computer’s kernel by adding loadable modules so that when the /bin/login file is sent through a TCP connection, the original /bin/login, rather than the modified version, is sent.

You put a copy of PGP on a removable hard disk. You mount the hard disk to perform the signature verification and then unmount it. Furthermore, you put a good copy of /bin/login onto your removable hard disk and then copy the good program over the installed version on a regular basis.

The attacker regains control of your system and further modifies the kernel so that the modification to /bin/login is patched into the running program after it loads. Any attempt to read the contents of the /bin/login file results in the original, unmodified version.

You reinstall the entire system software, and configure the system to boot from a read-only device such as a CD-ROM.

Because the system now boots from a CD-ROM, you cannot easily update system software as bugs are discovered. The attacker waits for a bug to crop up in one of your installed programs, such as sendmail. When the bug is reported, the attacker will be ready to pounce.

Your move . . .

If you think that this description sounds like an intricate game of chess, you’re right. Practical computer security is a series of actions and counteractions, attacks and defenses. As with chess, success depends on anticipating your opponent’s moves and planning countermeasures ahead of time. Simply reacting to your opponent’s moves is a recipe for failure.

The key thing to note, however, is that somewhere, at some level, you need to trust what you are working with. Maybe you trust the hardware. Maybe you trust the CD-ROM. But at some level, you need to trust what you have on hand. Perfect security isn’t possible, so we need to settle for the next best thing: reasonable trust on which to build.

The question is, where do you place that trust?



[358] We don’t recommend such pranks. People like Harry may not realize they are difficult, and adding to their personal misery is unlikely to help their disposition or social skills. At the least, making someone’s life a little more difficult is cruel. Perhaps Harry could have gone on to invent some great security tool or computing aid for the disabled had be not been so discouraged. At the worst, we have read too many news stories about the office loner who snaps and lays waste to the office with an assault rifle.

[359] Communications of the ACM, Volume 27, Number 8, August 1984.

[360] Your typical compiler likely has many other accidental bugs and faults that aren’t so well hidden, too!