Table of Contents for
Practical UNIX and Internet Security, 3rd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Practical UNIX and Internet Security, 3rd Edition by Alan Schwartz Published by O'Reilly Media, Inc., 2003
  1. Cover
  2. Practical Unix & Internet Security, 3rd Edition
  3. A Note Regarding Supplemental Files
  4. Preface
  5. Unix “Security”?
  6. Scope of This Book
  7. Which Unix System?
  8. Conventions Used in This Book
  9. Comments and Questions
  10. Acknowledgments
  11. A Note to Would-Be Attackers
  12. I. Computer Security Basics
  13. 1. Introduction: Some Fundamental Questions
  14. What Is Computer Security?
  15. What Is an Operating System?
  16. What Is a Deployment Environment?
  17. Summary
  18. 2. Unix History and Lineage
  19. History of Unix
  20. Security and Unix
  21. Role of This Book
  22. Summary
  23. 3. Policies and Guidelines
  24. Planning Your Security Needs
  25. Risk Assessment
  26. Cost-Benefit Analysis and Best Practices
  27. Policy
  28. Compliance Audits
  29. Outsourcing Options
  30. The Problem with Security Through Obscurity
  31. Summary
  32. II. Security Building Blocks
  33. 4. Users, Passwords, and Authentication
  34. Logging in with Usernames and Passwords
  35. The Care and Feeding of Passwords
  36. How Unix Implements Passwords
  37. Network Account and Authorization Systems
  38. Pluggable Authentication Modules (PAM)
  39. Summary
  40. 5. Users, Groups, and the Superuser
  41. Users and Groups
  42. The Superuser (root)
  43. The su Command: Changing Who You Claim to Be
  44. Restrictions on the Superuser
  45. Summary
  46. 6. Filesystems and Security
  47. Understanding Filesystems
  48. File Attributes and Permissions
  49. chmod: Changing a File’s Permissions
  50. The umask
  51. SUID and SGID
  52. Device Files
  53. Changing a File’s Owner or Group
  54. Summary
  55. 7. Cryptography Basics
  56. Understanding Cryptography
  57. Symmetric Key Algorithms
  58. Public Key Algorithms
  59. Message Digest Functions
  60. Summary
  61. 8. Physical Security for Servers
  62. Planning for the Forgotten Threats
  63. Protecting Computer Hardware
  64. Preventing Theft
  65. Protecting Your Data
  66. Story: A Failed Site Inspection
  67. Summary
  68. 9. Personnel Security
  69. Background Checks
  70. On the Job
  71. Departure
  72. Other People
  73. Summary
  74. III. Network and Internet Security
  75. 10. Modems and Dialup Security
  76. Modems: Theory of Operation
  77. Modems and Security
  78. Modems and Unix
  79. Additional Security for Modems
  80. Summary
  81. 11. TCP/IP Networks
  82. Networking
  83. IP: The Internet Protocol
  84. IP Security
  85. Summary
  86. 12. Securing TCP and UDP Services
  87. Understanding Unix Internet Servers and Services
  88. Controlling Access to Servers
  89. Primary Unix Network Services
  90. Managing Services Securely
  91. Putting It All Together: An Example
  92. Summary
  93. 13. Sun RPC
  94. Remote Procedure Call (RPC)
  95. Secure RPC (AUTH_DES)
  96. Summary
  97. 14. Network-Based Authentication Systems
  98. Sun’s Network Information Service (NIS)
  99. Sun’s NIS+
  100. Kerberos
  101. LDAP
  102. Other Network Authentication Systems
  103. Summary
  104. 15. Network Filesystems
  105. Understanding NFS
  106. Server-Side NFS Security
  107. Client-Side NFS Security
  108. Improving NFS Security
  109. Some Last Comments on NFS
  110. Understanding SMB
  111. Summary
  112. 16. Secure Programming Techniques
  113. One Bug Can Ruin Your Whole Day . . .
  114. Tips on Avoiding Security-Related Bugs
  115. Tips on Writing Network Programs
  116. Tips on Writing SUID/SGID Programs
  117. Using chroot( )
  118. Tips on Using Passwords
  119. Tips on Generating Random Numbers
  120. Summary
  121. IV. Secure Operations
  122. 17. Keeping Up to Date
  123. Software Management Systems
  124. Updating System Software
  125. Summary
  126. 18. Backups
  127. Why Make Backups?
  128. Backing Up System Files
  129. Software for Backups
  130. Summary
  131. 19. Defending Accounts
  132. Dangerous Accounts
  133. Monitoring File Format
  134. Restricting Logins
  135. Managing Dormant Accounts
  136. Protecting the root Account
  137. One-Time Passwords
  138. Administrative Techniques for Conventional Passwords
  139. Intrusion Detection Systems
  140. Summary
  141. 20. Integrity Management
  142. The Need for Integrity
  143. Protecting Integrity
  144. Detecting Changes After the Fact
  145. Integrity-Checking Tools
  146. Summary
  147. 21. Auditing, Logging, and Forensics
  148. Unix Log File Utilities
  149. Process Accounting: The acct/pacct File
  150. Program-Specific Log Files
  151. Designing a Site-Wide Log Policy
  152. Handwritten Logs
  153. Managing Log Files
  154. Unix Forensics
  155. Summary
  156. V. Handling Security Incidents
  157. 22. Discovering a Break-in
  158. Prelude
  159. Discovering an Intruder
  160. Cleaning Up After the Intruder
  161. Case Studies
  162. Summary
  163. 23. Protecting Against Programmed Threats
  164. Programmed Threats: Definitions
  165. Damage
  166. Authors
  167. Entry
  168. Protecting Yourself
  169. Preventing Attacks
  170. Summary
  171. 24. Denial of Service Attacks and Solutions
  172. Types of Attacks
  173. Destructive Attacks
  174. Overload Attacks
  175. Network Denial of Service Attacks
  176. Summary
  177. 25. Computer Crime
  178. Your Legal Options After a Break-in
  179. Criminal Hazards
  180. Criminal Subject Matter
  181. Summary
  182. 26. Who Do You Trust?
  183. Can You Trust Your Computer?
  184. Can You Trust Your Suppliers?
  185. Can You Trust People?
  186. Summary
  187. VI. Appendixes
  188. A. Unix Security Checklist
  189. Preface
  190. Chapter 1: Introduction: Some Fundamental Questions
  191. Chapter 2: Unix History and Lineage
  192. Chapter 3: Policies and Guidelines
  193. Chapter 4: Users, Passwords, and Authentication
  194. Chapter 5: Users, Groups, and the Superuser
  195. Chapter 6: Filesystems and Security
  196. Chapter 7: Cryptography Basics
  197. Chapter 8: Physical Security for Servers
  198. Chapter 9: Personnel Security
  199. Chapter 10: Modems and Dialup Security
  200. Chapter 11: TCP/IP Networks
  201. Chapter 12: Securing TCP and UDP Services
  202. Chapter 13: Sun RPC
  203. Chapter 14: Network-Based Authentication Systems
  204. Chapter 15: Network Filesystems
  205. Chapter 16: Secure Programming Techniques
  206. Chapter 17: Keeping Up to Date
  207. Chapter 18: Backups
  208. Chapter 19: Defending Accounts
  209. Chapter 20: Integrity Management
  210. Chapter 21: Auditing, Logging, and Forensics
  211. Chapter 22: Discovering a Break-In
  212. Chapter 23: Protecting Against Programmed Threats
  213. Chapter 24: Denial of Service Attacks and Solutions
  214. Chapter 25: Computer Crime
  215. Chapter 26: Who Do You Trust?
  216. Appendix A: Unix Security Checklist
  217. Appendix B: Unix Processes
  218. Appendixes C, D, and E: Paper Sources, Electronic Sources, and Organizations
  219. B. Unix Processes
  220. About Processes
  221. Signals
  222. Controlling and Examining Processes
  223. Starting Up Unix and Logging In
  224. C. Paper Sources
  225. Unix Security References
  226. Other Computer References
  227. D. Electronic Resources
  228. Mailing Lists
  229. Web Sites
  230. Usenet Groups
  231. Software Resources
  232. E. Organizations
  233. Professional Organizations
  234. U.S. Government Organizations
  235. Emergency Response Organizations
  236. Index
  237. Index
  238. Index
  239. Index
  240. Index
  241. Index
  242. Index
  243. Index
  244. Index
  245. Index
  246. Index
  247. Index
  248. Index
  249. Index
  250. Index
  251. Index
  252. Index
  253. Index
  254. Index
  255. Index
  256. Index
  257. Index
  258. Index
  259. Index
  260. Index
  261. Index
  262. Index
  263. About the Authors
  264. Colophon
  265. Copyright

chmod: Changing a File’s Permissions

When you create a file, its initial permissions depend on your umask value (which is discussed later). You can change a file’s permissions with the chmod command or the chmod( ) system call. You can change a file’s permissions only if you are the file’s owner. The one exception to this rule is the superuser: if you are logged in as the superuser, you can change the permissions of any file.[67]

In its simplest form, the chmod command lets you specify which of a file’s permissions you wish to change. This usage is called symbolic form. The symbolic form of the chmod command[68] has the form:

chmod [-Rfh] [agou][+-=][rwxXstugol] filelist

This command changes the permissions of filelist, which can be either a single file or a group of files. The letters agou specify whose privileges are being modified. You may provide none, one, or more, as shown in Table 6-7.

Table 6-7. Whose privileges are being modified?

Letter

Meaning

a

Modifies privileges for all users

g

Modifies group privileges

o

Modifies others’ privileges

u

Modifies the owner’s privileges

The symbols specify what is supposed to be done with the privilege. You must type only one symbol, as shown in Table 6-8.

Table 6-8. What to do with privilege

Symbol

Meaning

+

Adds to the current privilege

-

Removes from the current privilege

=

Replaces the current privilege

The last letters specify which privilege will be modified, as shown in Table 6-9.

Table 6-9. Which privileges are being changed?

Letter

Meaning

Options for all versions of Unix

r

Read access

w

Write access

x

Execute access

s

SUID or SGID

t

Sticky bit[a]

Options for BSD-derived versions of Unix only

X

Sets execute only if the file is a directory or already has some other execute bit set

u

Takes permissions from the user permissions

g

Takes permissions from the group permissions

o

Takes permissions from other permissions

Option for System V-derived versions of Unix only

l

Enables mandatory locking on file

[a] The sticky bit is discussed in detail later in this chapter. On most systems, only the superuser can set the sticky bit on a non-directory filesystem entry.

In versions that support it, the -R option causes the chmod command to run recursively. If you specify a directory in filelist, that directory’s permissions change, as do all of the files contained in that directory. If the directory contains any subdirectories, the process is repeated.

In versions that support it, the -f option prevents chmod from reporting any errors encountered. This processing is sometimes useful in shell scripts if you don’t know whether the filelist exists or if you don’t want to generate an error message.

The -h option is specified in some systems to change how chmod works with symbolic links. If the -h option is specified and one of the arguments is a symbolic link, the permissions of the file or directory pointed to by the link are not changed.

The symbolic form of the chmod command is useful if you only want to add or remove a specific privilege from a file. For example, if Sian wanted to give everybody in her group write permission to the file notes, she could issue the command:

% ls -l notes
-rw-r--r-- 1 sian     biochem    4320 Feb  9 13:20 notes
% chmod g+w notes
% ls -l notes
-rw-rw-r-- 1 sian     biochem    4320 Feb  9 13:20 notes
%

To change this file further so people who aren’t in her group can’t read it, she could use the command:

% chmod o-r notes
% ls -l notes
-rw-rw---- 1 sian     biochem    4320 Feb  9 13:20 notes
%

To change the permissions of the invoice file so nobody else on the system can read or write it, Sian could use the command:

% chmod go= invoice
% ls -l invoice
-rw------- 1 sian     user    4320 Feb  9 13:20 invoice
% date
Sun Feb 10 00:32:55 EST 1991
%

Notice that changing a file’s permissions does not change its modification time (although it will alter the inode’s ctime).

Setting a File’s Permissions

You can also use the chmod command to set a file’s permissions, without regard to the settings that existed before the command was executed. This format is called the absolute form of the chmod command. The absolute form of chmod has the syntax:[69]

% chmod [-Rfh] mode filelist

in which the options have the following meanings:

-R

As described earlier

-f

As described earlier

-h

As described earlier

mode

The mode to which you wish to set the file, expressed as an octal[70] value

filelist

The list of the files whose modes you wish to set

To use this form of the chmod command, you must calculate the octal value of the file permissions that you want. The next section describes how to do this.

Calculating octal file permissions

chmod allows you to specify a file’s permissions with a four-digit octal number. You calculate the number by adding[71] the permissions. Use Table 6-10 to determine the octal number that corresponds to each file permission.

Table 6-10. Octal numbers and permissions

Octal number

Permission

4000

Set user ID on execution (SUID)

2000

Set group ID on execution (SGID)

1000

“Sticky bit”

0400

Read by owner

0200

Written by owner

0100

Executed by owner

0040

Read by group

0020

Written by group

0010

Executed by group

0004

Read by other

0002

Written by other

0001

Executed by other

Thus, a file with the permissions “-rwxr-x—-” has a mode of 0750, calculated as follows:

0400

Read by owner

0200

Written by owner

0100

Executed by owner

0040

Read by group

0010

Executed by group

0750

Result

Table 6-11 contains some common file permissions and their uses.

Table 6-11. Common file permissions

Octal number

File

Permission

0755

/bin/ls

Anybody can copy or run the program; the file’s owner can modify it.

0711

$HOME

Locks a user’s home directory so that no other users on the system can display its contents, but allows other users to access files or subdirectories contained within the directory if they know the names of the files or directories.

0700

$HOME

Locks a user’s home directory so that no other users on the system can access its contents, or the contents of any subdirectory.

0600

/usr/mail/$USER and other mailboxes

The user can read or write the contents of the mailbox, but no other users (except the superuser) may access it.

0644

Any file

The file’s owner can read or modify the file; everybody else can only read it.

0664

groupfile

The file’s owner or anybody in the group can modify the file; everybody else can only read it.

0666

writable

Anybody can read or modify the file.

0444

readable

Anybody can read the file; only the superuser can modify it without changing the permissions.

Table 6-12 contains some common directory permissions and their uses.

Table 6-12. Common directory permissions

Octal number

Directory

Permission

0755

/

Anybody can view the contents of the directory, but only the owner or superuser can make changes.

1777

/tmp

Any user can create a file in the directory, but a user cannot delete another user’s files.

0700

$HOME

A user can access the contents of his home directory, but nobody else can.

Using octal file permissions

After you have calculated the octal file permission that you want, you can use the chmod command to set the permissions of files you own.

For example, to make all of the C language source files in a directory writable by the owner and readable by everybody else, type the command:

% chmod 644 *.c
% ls -l *.c
-rw-r--r-- 1 kevin     okisrc   28092 Aug  9 9:52 cdrom.c
-rw-r--r-- 1 kevin     okisrc    5496 Aug  9 9:52 cfs_subr.c
-rw-r--r-- 1 kevin     okisrc    5752 Aug  9 9:52 cfs_vfsops.c
-rw-r--r-- 1 kevin     okisrc   11998 Aug  9 9:53 cfs_vnodeops.c
-rw-r--r-- 1 kevin     okisrc    3031 Aug  9 9:53 load_unld.c
-rw-r--r-- 1 kevin     okisrc    1928 Aug  9 9:54 Unix_rw.c
-rw-r--r-- 1 kevin     okisrc     153 Aug  9 9:54 vers.c
%

To change the permissions of a file so it can be read or modified by anybody in the file’s group, but can’t be read or written by anybody else in the system, type the command:

% chmod 660 memberlist
% ls -l memberlist
-rw-rw---- 1 kevin    okisrc     153 Aug 10 8:32 memberlist
%

Access Control Lists

ACLs are a mechanism for providing fine-grained control over the access to files. Without ACLs, the only way that you can grant permission to a single person or a group of people to access a specific file or directory is to create a group for that person or group of people. With ACLs you can grant the access directly. For example, you can allow four different groups to a read a file without making it world-readable, or allow two users to create files in a directory without putting them in a group together.

Many Unix vendors (most notably IBM and HP) developed their own proprietary ACL implementations in the mid to early 1990s. In the 1990s the POSIX 1.e committee developed a working draft for a standard ACL implementation. Unfortunately, after 13 years of work, the IEEE/PASC/SEC working group formally withdrew the POSIX 1.e draft from the standards process on January 15, 1998. You can read the last draft at http://wt.xpilot.org/publications/posix.1e/.

Despite the decision to withdraw the draft, it continues to serve as a basis for adding ACLs to the Unix operating system. Parts of this implementation were implemented in the Solaris and FreeBSD operating systems. Although ACL support is not yet in the standard Linux kernel, a set of patches for implementing it has been written by Andreas Grünbacher, and is available at http://acl.bestbits.at/.



[67] That is, any file that is not mounted using NFS or another distributed filesystem, or that is mounted read-only. See Chapter 15 for details.

[68] The Unix kernel actually supports two system calls for changing a file’s mode: chmod( ), which changes the mode of a file, and fchmod( ), which changes the mode of a file associated with an open file descriptor.

[69] Note that some versions of Unix support additional flags covering cases of symbolic links in hierarchies and special file types. See your manuals.

[70] Octal means “base 8.” Normally, we use base 10, which uses the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The octal system uses the digits 0, 1, 2, 3, 4, 5, 6, and 7. If you are confused, don’t be. For most purposes, you can pretend that the numbers are in decimal notation and never know the difference.

[71] Technically, we are OR-ing the values together, but as there is no carry, it’s the same as adding.