Table of Contents for
Practical UNIX and Internet Security, 3rd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Practical UNIX and Internet Security, 3rd Edition by Alan Schwartz Published by O'Reilly Media, Inc., 2003
  1. Cover
  2. Practical Unix & Internet Security, 3rd Edition
  3. A Note Regarding Supplemental Files
  4. Preface
  5. Unix “Security”?
  6. Scope of This Book
  7. Which Unix System?
  8. Conventions Used in This Book
  9. Comments and Questions
  10. Acknowledgments
  11. A Note to Would-Be Attackers
  12. I. Computer Security Basics
  13. 1. Introduction: Some Fundamental Questions
  14. What Is Computer Security?
  15. What Is an Operating System?
  16. What Is a Deployment Environment?
  17. Summary
  18. 2. Unix History and Lineage
  19. History of Unix
  20. Security and Unix
  21. Role of This Book
  22. Summary
  23. 3. Policies and Guidelines
  24. Planning Your Security Needs
  25. Risk Assessment
  26. Cost-Benefit Analysis and Best Practices
  27. Policy
  28. Compliance Audits
  29. Outsourcing Options
  30. The Problem with Security Through Obscurity
  31. Summary
  32. II. Security Building Blocks
  33. 4. Users, Passwords, and Authentication
  34. Logging in with Usernames and Passwords
  35. The Care and Feeding of Passwords
  36. How Unix Implements Passwords
  37. Network Account and Authorization Systems
  38. Pluggable Authentication Modules (PAM)
  39. Summary
  40. 5. Users, Groups, and the Superuser
  41. Users and Groups
  42. The Superuser (root)
  43. The su Command: Changing Who You Claim to Be
  44. Restrictions on the Superuser
  45. Summary
  46. 6. Filesystems and Security
  47. Understanding Filesystems
  48. File Attributes and Permissions
  49. chmod: Changing a File’s Permissions
  50. The umask
  51. SUID and SGID
  52. Device Files
  53. Changing a File’s Owner or Group
  54. Summary
  55. 7. Cryptography Basics
  56. Understanding Cryptography
  57. Symmetric Key Algorithms
  58. Public Key Algorithms
  59. Message Digest Functions
  60. Summary
  61. 8. Physical Security for Servers
  62. Planning for the Forgotten Threats
  63. Protecting Computer Hardware
  64. Preventing Theft
  65. Protecting Your Data
  66. Story: A Failed Site Inspection
  67. Summary
  68. 9. Personnel Security
  69. Background Checks
  70. On the Job
  71. Departure
  72. Other People
  73. Summary
  74. III. Network and Internet Security
  75. 10. Modems and Dialup Security
  76. Modems: Theory of Operation
  77. Modems and Security
  78. Modems and Unix
  79. Additional Security for Modems
  80. Summary
  81. 11. TCP/IP Networks
  82. Networking
  83. IP: The Internet Protocol
  84. IP Security
  85. Summary
  86. 12. Securing TCP and UDP Services
  87. Understanding Unix Internet Servers and Services
  88. Controlling Access to Servers
  89. Primary Unix Network Services
  90. Managing Services Securely
  91. Putting It All Together: An Example
  92. Summary
  93. 13. Sun RPC
  94. Remote Procedure Call (RPC)
  95. Secure RPC (AUTH_DES)
  96. Summary
  97. 14. Network-Based Authentication Systems
  98. Sun’s Network Information Service (NIS)
  99. Sun’s NIS+
  100. Kerberos
  101. LDAP
  102. Other Network Authentication Systems
  103. Summary
  104. 15. Network Filesystems
  105. Understanding NFS
  106. Server-Side NFS Security
  107. Client-Side NFS Security
  108. Improving NFS Security
  109. Some Last Comments on NFS
  110. Understanding SMB
  111. Summary
  112. 16. Secure Programming Techniques
  113. One Bug Can Ruin Your Whole Day . . .
  114. Tips on Avoiding Security-Related Bugs
  115. Tips on Writing Network Programs
  116. Tips on Writing SUID/SGID Programs
  117. Using chroot( )
  118. Tips on Using Passwords
  119. Tips on Generating Random Numbers
  120. Summary
  121. IV. Secure Operations
  122. 17. Keeping Up to Date
  123. Software Management Systems
  124. Updating System Software
  125. Summary
  126. 18. Backups
  127. Why Make Backups?
  128. Backing Up System Files
  129. Software for Backups
  130. Summary
  131. 19. Defending Accounts
  132. Dangerous Accounts
  133. Monitoring File Format
  134. Restricting Logins
  135. Managing Dormant Accounts
  136. Protecting the root Account
  137. One-Time Passwords
  138. Administrative Techniques for Conventional Passwords
  139. Intrusion Detection Systems
  140. Summary
  141. 20. Integrity Management
  142. The Need for Integrity
  143. Protecting Integrity
  144. Detecting Changes After the Fact
  145. Integrity-Checking Tools
  146. Summary
  147. 21. Auditing, Logging, and Forensics
  148. Unix Log File Utilities
  149. Process Accounting: The acct/pacct File
  150. Program-Specific Log Files
  151. Designing a Site-Wide Log Policy
  152. Handwritten Logs
  153. Managing Log Files
  154. Unix Forensics
  155. Summary
  156. V. Handling Security Incidents
  157. 22. Discovering a Break-in
  158. Prelude
  159. Discovering an Intruder
  160. Cleaning Up After the Intruder
  161. Case Studies
  162. Summary
  163. 23. Protecting Against Programmed Threats
  164. Programmed Threats: Definitions
  165. Damage
  166. Authors
  167. Entry
  168. Protecting Yourself
  169. Preventing Attacks
  170. Summary
  171. 24. Denial of Service Attacks and Solutions
  172. Types of Attacks
  173. Destructive Attacks
  174. Overload Attacks
  175. Network Denial of Service Attacks
  176. Summary
  177. 25. Computer Crime
  178. Your Legal Options After a Break-in
  179. Criminal Hazards
  180. Criminal Subject Matter
  181. Summary
  182. 26. Who Do You Trust?
  183. Can You Trust Your Computer?
  184. Can You Trust Your Suppliers?
  185. Can You Trust People?
  186. Summary
  187. VI. Appendixes
  188. A. Unix Security Checklist
  189. Preface
  190. Chapter 1: Introduction: Some Fundamental Questions
  191. Chapter 2: Unix History and Lineage
  192. Chapter 3: Policies and Guidelines
  193. Chapter 4: Users, Passwords, and Authentication
  194. Chapter 5: Users, Groups, and the Superuser
  195. Chapter 6: Filesystems and Security
  196. Chapter 7: Cryptography Basics
  197. Chapter 8: Physical Security for Servers
  198. Chapter 9: Personnel Security
  199. Chapter 10: Modems and Dialup Security
  200. Chapter 11: TCP/IP Networks
  201. Chapter 12: Securing TCP and UDP Services
  202. Chapter 13: Sun RPC
  203. Chapter 14: Network-Based Authentication Systems
  204. Chapter 15: Network Filesystems
  205. Chapter 16: Secure Programming Techniques
  206. Chapter 17: Keeping Up to Date
  207. Chapter 18: Backups
  208. Chapter 19: Defending Accounts
  209. Chapter 20: Integrity Management
  210. Chapter 21: Auditing, Logging, and Forensics
  211. Chapter 22: Discovering a Break-In
  212. Chapter 23: Protecting Against Programmed Threats
  213. Chapter 24: Denial of Service Attacks and Solutions
  214. Chapter 25: Computer Crime
  215. Chapter 26: Who Do You Trust?
  216. Appendix A: Unix Security Checklist
  217. Appendix B: Unix Processes
  218. Appendixes C, D, and E: Paper Sources, Electronic Sources, and Organizations
  219. B. Unix Processes
  220. About Processes
  221. Signals
  222. Controlling and Examining Processes
  223. Starting Up Unix and Logging In
  224. C. Paper Sources
  225. Unix Security References
  226. Other Computer References
  227. D. Electronic Resources
  228. Mailing Lists
  229. Web Sites
  230. Usenet Groups
  231. Software Resources
  232. E. Organizations
  233. Professional Organizations
  234. U.S. Government Organizations
  235. Emergency Response Organizations
  236. Index
  237. Index
  238. Index
  239. Index
  240. Index
  241. Index
  242. Index
  243. Index
  244. Index
  245. Index
  246. Index
  247. Index
  248. Index
  249. Index
  250. Index
  251. Index
  252. Index
  253. Index
  254. Index
  255. Index
  256. Index
  257. Index
  258. Index
  259. Index
  260. Index
  261. Index
  262. Index
  263. About the Authors
  264. Colophon
  265. Copyright

Protecting the root Account

Some Unix systems offer additional methods of protecting the root account:

  • Secure terminals

  • The wheel group

  • The sudo program

A few systems provide an additional set of features, known as a trusted path and a trusted computing base (TCB). We’ll describe all of these features in the following sections.

Secure Terminals

Because every Unix system has an account named root, this account is often a starting point for people who try to break into a system by guessing passwords. One way to decrease the chance of such break-ins is to restrict logins from all but physically guarded terminals. If a terminal is marked as restricted, the superuser cannot log into that terminal from the login: prompt. (However, a legitimate user who knows the superuser password can still use the su command on that terminal after first logging in.)

On an SVR4 machine, you can restrict the ability of users to log into the root account from any terminal other than the console. You accomplish this by editing the file /etc/default/login and inserting the line:

CONSOLE=/dev/console

This line prevents anyone from logging in as root on any terminal other than the console. If the console is not safe, you may set this to the pathname of a nonexistent terminal.

Linux and some BSD-derived versions of Unix allow you to declare terminal lines and network ports as either secure or not secure. You declare a terminal secure by appending the word “secure” to the terminal’s definition in the file /etc/ttys:[280]

tty01 "/usr/etc/getty std.9600" vt100 on secure
tty02 "/usr/etc/getty std.9600" vt100 on

In this example taken from an /etc/ttys file, terminal tty01 is secure and terminal tty02 is not. This means that root can log into terminal tty01 but not tty02.

Note that after changing the /etc/ttys file, you may need to send out a signal to init before the changes will take effect. On a BSD-derived system, run:

# kill -1 1

Other systems vary, so check your own system’s documentation.[281]

You should carefully consider which terminals are declared secure. Many sites, for example, make neither their dial-in modems nor their network connections secure; this prevents intruders from using these connections to guess the system’s superuser password. Terminals in public areas should also not be declared secure. Being “not secure” does not prevent a person from executing commands as the superuser: it simply forces users to log in as themselves and then use the su command to become root. This method adds an extra layer of protection and accounting, and many administrators declare all of their terminals as “not secure” for this reason.

On the other hand, if your computer has a terminal in a special machine room, you may wish to make this terminal secure so you can quickly use it to log into the superuser account without having to log into your own account first.

Tip

Many versions of Unix require that you type the superuser password when booting in single-user mode if the console is not listed as “secure” in the /etc/ttys file. Obviously, if you do not mark your console “secure,” you enhance your system’s security.

The wheel Group

Another mechanism that further protects the root account is the wheel group. A user who is not in the wheel group cannot use the su command to become the superuser. Be very careful about who you place in the wheel group; on some versions of Unix, people in the wheel group can provide their own passwords to su—instead of the superuser password—and become root.

The sudo Program

The sudo program, which is included with several Linux distributions and MacOS X, and can be installed on any Unix system, takes another approach to the problem of the root account that is particularly suitable when several people are responsible for system administration. Instead of giving all of the administrators the superuser password (and thus turning root into a group account), the administrators use the sudo command to run programs as root. sudo prompts for the user’s password, rather than the root password.

The strength of sudo lies in its ability to restrict which commands a user can run and to log every command run by sudo. For example, it can be used to permit a user to run only the dump command as root to perform a system backup. The logging facility provides greatly increased accountability for superuser commands.

The potential downside of sudo, of course, is that the accounts of users who are permitted to run commands as root must, in most cases, be protected as strongly as the superuser account.

Trusted Path and Trusted Computing Base

When you are worried about security, you want to ensure that the commands you execute are the real system commands and not something designed to steal your password or corrupt your system. Some versions of Unix have been augmented with special features to provide you with this additional assurance.

Trusted path

Consider the case in which you approach a terminal and wish to log into the system. What if someone has left a program—a Trojan horse program (see Chapter 23)—running on the terminal? If the program has been designed to capture your password by presenting a prompt that looks like the real login program, you might not be able to tell the difference until the damage is done. If the program has been very carefully crafted to catch signals and otherwise mimic the login program behavior, you might not catch on at all. And if you are not using one-time passwords (described later in Section 19.6), you may be giving someone else access to your account.

The solution to this is to provide a trusted path to the login program from your terminal. Some Unix systems can be configured to recognize a special signal from hardwired terminals (including workstation consoles) for this purpose. When the signal (usually a BREAK, or some sequence of control characters) is received by the low-level terminal driver, the driver sends an unstoppable signal to all processes still connected to the terminal that terminates them. Thereafter, a new session is started and the user can be assured that the next prompt for a login is from the real system software.

For a trusted-path mechanism to work, you must have a hardwired connection to the computer: any networked connection can be intercepted and spoofed.[282] The system administrator must enable the trusted-path mechanism and indicate to which terminal lines it should be applied. As this may require reconfiguring the kernel and rebooting (to include the necessary terminal code), you should carefully read your vendor documentation for instructions on how to enable this feature.

If your system provides the trusted-path mechanism and you decide to use it, be sure to limit superuser logins to only the associated terminals!

Trusted computing base

After you have logged in, you may be faced with situations in which you are not quite certain if you are executing a trusted system command or a command put in place by a prankster or intruder. If you are running as the superuser, this uncertainty is a recipe for disaster, and is why we repeatedly warn you throughout the book to leave the current directory out of your search path, and to keep system commands protected.

Some systems can be configured to mark executable files as part of the TCB. Files in the TCB are specially marked by the superuser as trusted. When you’re running a special trusted shell, only files with the TCB marking can be executed with exec( ). Thus, only trusted files can be executed.

How do files get their trusted markings? New files and modified TCB files have the marking turned off. The superuser can mark new executable files as part of the TCB; on some systems, this process can be done only if the file was created with programs in the TCB. In theory, an attacker who is not already the superuser will not be able to mark Trojan files as part of the TCB, and thus the superuser cannot accidentally execute dangerous code.

This feature is especially worthwhile if you are administering a multiuser system, or if you tend to import files and filesystems from other, potentially untrusted, systems. However, you must keep in mind that the marking does not necessarily mean that the program is harmless. The superuser can mark files as part of the TCB, and some of those files might be dangerous. Thus, remember that the TCB, as with every other feature, only reinforces overall security rather than guarantees it.



[280] Under SunOS and some other versions of Unix, this file is called /etc/ttytab; under Linux, it’s /etc/securetty (and is simply a list of terminals on which root can log in, including entries like “vc/1” which refer to the first virtual console window provided by the Linux text-based console system). Some older versions of BSD store the list of secure ports in the file /etc/securettys.

[281] Declaring network ports as not secure generally prevents connections using protocols that call the login program (such as Telnet), but may not prevent root from connecting using protocols that bypass login entirely. Fortunately, the most useful of such protocols, SSH, is usually implemented so that you can prevent root SSH logins with a configuration file entry.

[282] Network logins have other potential problems, such as password sniffing. As we’ve made clear elsewhere in this book, plaintext passwords should not be transmitted over a network. Use SSH or another encrypting protocol instead.