Table of Contents for
Practical UNIX and Internet Security, 3rd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Practical UNIX and Internet Security, 3rd Edition by Alan Schwartz Published by O'Reilly Media, Inc., 2003
  1. Cover
  2. Practical Unix & Internet Security, 3rd Edition
  3. A Note Regarding Supplemental Files
  4. Preface
  5. Unix “Security”?
  6. Scope of This Book
  7. Which Unix System?
  8. Conventions Used in This Book
  9. Comments and Questions
  10. Acknowledgments
  11. A Note to Would-Be Attackers
  12. I. Computer Security Basics
  13. 1. Introduction: Some Fundamental Questions
  14. What Is Computer Security?
  15. What Is an Operating System?
  16. What Is a Deployment Environment?
  17. Summary
  18. 2. Unix History and Lineage
  19. History of Unix
  20. Security and Unix
  21. Role of This Book
  22. Summary
  23. 3. Policies and Guidelines
  24. Planning Your Security Needs
  25. Risk Assessment
  26. Cost-Benefit Analysis and Best Practices
  27. Policy
  28. Compliance Audits
  29. Outsourcing Options
  30. The Problem with Security Through Obscurity
  31. Summary
  32. II. Security Building Blocks
  33. 4. Users, Passwords, and Authentication
  34. Logging in with Usernames and Passwords
  35. The Care and Feeding of Passwords
  36. How Unix Implements Passwords
  37. Network Account and Authorization Systems
  38. Pluggable Authentication Modules (PAM)
  39. Summary
  40. 5. Users, Groups, and the Superuser
  41. Users and Groups
  42. The Superuser (root)
  43. The su Command: Changing Who You Claim to Be
  44. Restrictions on the Superuser
  45. Summary
  46. 6. Filesystems and Security
  47. Understanding Filesystems
  48. File Attributes and Permissions
  49. chmod: Changing a File’s Permissions
  50. The umask
  51. SUID and SGID
  52. Device Files
  53. Changing a File’s Owner or Group
  54. Summary
  55. 7. Cryptography Basics
  56. Understanding Cryptography
  57. Symmetric Key Algorithms
  58. Public Key Algorithms
  59. Message Digest Functions
  60. Summary
  61. 8. Physical Security for Servers
  62. Planning for the Forgotten Threats
  63. Protecting Computer Hardware
  64. Preventing Theft
  65. Protecting Your Data
  66. Story: A Failed Site Inspection
  67. Summary
  68. 9. Personnel Security
  69. Background Checks
  70. On the Job
  71. Departure
  72. Other People
  73. Summary
  74. III. Network and Internet Security
  75. 10. Modems and Dialup Security
  76. Modems: Theory of Operation
  77. Modems and Security
  78. Modems and Unix
  79. Additional Security for Modems
  80. Summary
  81. 11. TCP/IP Networks
  82. Networking
  83. IP: The Internet Protocol
  84. IP Security
  85. Summary
  86. 12. Securing TCP and UDP Services
  87. Understanding Unix Internet Servers and Services
  88. Controlling Access to Servers
  89. Primary Unix Network Services
  90. Managing Services Securely
  91. Putting It All Together: An Example
  92. Summary
  93. 13. Sun RPC
  94. Remote Procedure Call (RPC)
  95. Secure RPC (AUTH_DES)
  96. Summary
  97. 14. Network-Based Authentication Systems
  98. Sun’s Network Information Service (NIS)
  99. Sun’s NIS+
  100. Kerberos
  101. LDAP
  102. Other Network Authentication Systems
  103. Summary
  104. 15. Network Filesystems
  105. Understanding NFS
  106. Server-Side NFS Security
  107. Client-Side NFS Security
  108. Improving NFS Security
  109. Some Last Comments on NFS
  110. Understanding SMB
  111. Summary
  112. 16. Secure Programming Techniques
  113. One Bug Can Ruin Your Whole Day . . .
  114. Tips on Avoiding Security-Related Bugs
  115. Tips on Writing Network Programs
  116. Tips on Writing SUID/SGID Programs
  117. Using chroot( )
  118. Tips on Using Passwords
  119. Tips on Generating Random Numbers
  120. Summary
  121. IV. Secure Operations
  122. 17. Keeping Up to Date
  123. Software Management Systems
  124. Updating System Software
  125. Summary
  126. 18. Backups
  127. Why Make Backups?
  128. Backing Up System Files
  129. Software for Backups
  130. Summary
  131. 19. Defending Accounts
  132. Dangerous Accounts
  133. Monitoring File Format
  134. Restricting Logins
  135. Managing Dormant Accounts
  136. Protecting the root Account
  137. One-Time Passwords
  138. Administrative Techniques for Conventional Passwords
  139. Intrusion Detection Systems
  140. Summary
  141. 20. Integrity Management
  142. The Need for Integrity
  143. Protecting Integrity
  144. Detecting Changes After the Fact
  145. Integrity-Checking Tools
  146. Summary
  147. 21. Auditing, Logging, and Forensics
  148. Unix Log File Utilities
  149. Process Accounting: The acct/pacct File
  150. Program-Specific Log Files
  151. Designing a Site-Wide Log Policy
  152. Handwritten Logs
  153. Managing Log Files
  154. Unix Forensics
  155. Summary
  156. V. Handling Security Incidents
  157. 22. Discovering a Break-in
  158. Prelude
  159. Discovering an Intruder
  160. Cleaning Up After the Intruder
  161. Case Studies
  162. Summary
  163. 23. Protecting Against Programmed Threats
  164. Programmed Threats: Definitions
  165. Damage
  166. Authors
  167. Entry
  168. Protecting Yourself
  169. Preventing Attacks
  170. Summary
  171. 24. Denial of Service Attacks and Solutions
  172. Types of Attacks
  173. Destructive Attacks
  174. Overload Attacks
  175. Network Denial of Service Attacks
  176. Summary
  177. 25. Computer Crime
  178. Your Legal Options After a Break-in
  179. Criminal Hazards
  180. Criminal Subject Matter
  181. Summary
  182. 26. Who Do You Trust?
  183. Can You Trust Your Computer?
  184. Can You Trust Your Suppliers?
  185. Can You Trust People?
  186. Summary
  187. VI. Appendixes
  188. A. Unix Security Checklist
  189. Preface
  190. Chapter 1: Introduction: Some Fundamental Questions
  191. Chapter 2: Unix History and Lineage
  192. Chapter 3: Policies and Guidelines
  193. Chapter 4: Users, Passwords, and Authentication
  194. Chapter 5: Users, Groups, and the Superuser
  195. Chapter 6: Filesystems and Security
  196. Chapter 7: Cryptography Basics
  197. Chapter 8: Physical Security for Servers
  198. Chapter 9: Personnel Security
  199. Chapter 10: Modems and Dialup Security
  200. Chapter 11: TCP/IP Networks
  201. Chapter 12: Securing TCP and UDP Services
  202. Chapter 13: Sun RPC
  203. Chapter 14: Network-Based Authentication Systems
  204. Chapter 15: Network Filesystems
  205. Chapter 16: Secure Programming Techniques
  206. Chapter 17: Keeping Up to Date
  207. Chapter 18: Backups
  208. Chapter 19: Defending Accounts
  209. Chapter 20: Integrity Management
  210. Chapter 21: Auditing, Logging, and Forensics
  211. Chapter 22: Discovering a Break-In
  212. Chapter 23: Protecting Against Programmed Threats
  213. Chapter 24: Denial of Service Attacks and Solutions
  214. Chapter 25: Computer Crime
  215. Chapter 26: Who Do You Trust?
  216. Appendix A: Unix Security Checklist
  217. Appendix B: Unix Processes
  218. Appendixes C, D, and E: Paper Sources, Electronic Sources, and Organizations
  219. B. Unix Processes
  220. About Processes
  221. Signals
  222. Controlling and Examining Processes
  223. Starting Up Unix and Logging In
  224. C. Paper Sources
  225. Unix Security References
  226. Other Computer References
  227. D. Electronic Resources
  228. Mailing Lists
  229. Web Sites
  230. Usenet Groups
  231. Software Resources
  232. E. Organizations
  233. Professional Organizations
  234. U.S. Government Organizations
  235. Emergency Response Organizations
  236. Index
  237. Index
  238. Index
  239. Index
  240. Index
  241. Index
  242. Index
  243. Index
  244. Index
  245. Index
  246. Index
  247. Index
  248. Index
  249. Index
  250. Index
  251. Index
  252. Index
  253. Index
  254. Index
  255. Index
  256. Index
  257. Index
  258. Index
  259. Index
  260. Index
  261. Index
  262. Index
  263. About the Authors
  264. Colophon
  265. Copyright

Protecting Integrity

Whenever possible, we would like to prevent unauthorized alteration or deletion of data on our systems. We can do so via software controls and some hardware means. We have discussed many of the software methods available on Unix systems in other chapters. These have included setting appropriate permissions on files and directories, restricting access to the root account, and controlling access to remote services.

Unfortunately, no matter how vigilant we may be, bugs occur in software (more often than they should!), and configuration errors are made.[297] In such cases, we want our data to be protected by something at a lower level—something in which we might have more confidence.

Immutable and Append-Only Files

Two helpful mechanisms were built into BSD 4.4 Unix: immutable files and append-only files. These wonderful mechanisms are present only (at the time of this writing, to the best of our knowledge) in the FreeBSD, NetBSD, OpenBSD, BSDOS, and Linux[298] versions of Unix. It is a pity that more commercial vendors have not seen fit to integrate these ideas in their products.

As their name implies, immutable files are files that cannot be modified once the computer is running. They are ideally suited to system configuration files, such as /etc/rc and /etc/inetd.conf, as well as for the Unix kernel itself. Append-only files are files to which data can be appended, but in which existing data cannot be changed. They are ideally suited for log files.

The chflags command

The superuser can make any file immutable or append-only through the use of the chflags command.[299] This example makes the kernel immutable and the file /var/log/messages append-only:

# chflags schg /kernel
# chflags sappnd /var/log/messages

Now even the superuser cannot change the contents of these files (although the superuser can still append to /var/log/messages). Attempts to modify the contents give a suitable error message:

# /bin/rm /kernel
override r-xr-xr-x  root/wheel schg for /kernel? y
rm: /kernel: Operation not permitted
#

You can verify the flags on a file using the -o option to the ls command:

# ls -l -o messages
-rw-r--r--  1 root  wheel  uappnd 118506 Aug 17 22:15 messages
# chflags nouappnd messages

Of course, the superuser can remove the flags:

# chflags noschg /kernel 
# chflags nosappnd /var/log/messages
# ls -l -o messages
-rw-r--r--  1 root  wheel  - 118608 Aug 17 22:16 messages
#

Now you can delete your kernel, if you really want to!

Kernel security level

To implement these new file modes, BSD 4.4 introduced a new concept called the kernel security level. Briefly, the kernel security level defines the four levels of security listed in Table 20-1. Any process running as superuser can raise the security level, but only the init process (process number 1) can lower it.[300]

Table 20-1. BSD 4.4 security levels

Security level

Mode

Meaning

-1

Permanently unsecure

Normal Unix behavior.

0

Unsecure mode

The immutable and append-only flags can be changed.

1

Secure mode

The immutable and append-only flags cannot be changed. Unix devices that correspond to mounted filesystems, as well as the /dev/mem and /dev/kmem devices, are read-only.

2

Highly secure mode

A superset of the secure mode. All disk devices are read-only, whether or not they correspond to mounted filesystems. This prevents an attacker from unmounting a filesystem to modify the raw bits on the device, but it prevents you from creating new filesystems with the newfs command while the system is operational.

The 4.4 BSD filesystem does not allow any changes to files that are immutable or append-only. Thus, even if an attacker obtains superuser access, he cannot modify these files. By including init and its configuration files in the set of immutable files, the attacker is prevented from remotely rebooting the system at a lower security level. Furthermore, the system prevents “on-the-fly” patching of the operating system by making writes to the /dev/mem or /dev/kmem devices. Properly configured, these new innovations can dramatically improve a system’s resistance to a determined attacker.[301]

Of course, immutable files can be overcome by an attacker who has physical access to the computer: the attacker could simply reboot the computer in single-user mode before the system switches into secure mode. However, if someone has physical access, that person could just as easily remove the disk and modify it on another computer system. In most environments, physical access can be restricted somewhat. If an attacker at a remote site shuts down the system, thus enabling writing of the partition, that attacker also shuts down any connection he would use to modify that partition.

Although these new filesystem structures are a great idea, it is still possible to modify data within immutable files if care is not taken. For instance, an attacker might compromise root and alter some of the programs used by the system during startup. Thus, many files need to be protected with immutability if the system is to be used effectively.

Read-Only Filesystems

A somewhat stronger preventive mechanism is to use hardware read-only protection of the data. To do so requires setting a physical write-protect switch on a disk drive[302] or mounting the data using a CD-ROM or DVD. The material is then mounted using the software read-only option with the mount command. Even the best computer criminals in the business can’t connect across the network and write to a read-only CD-ROM!

Note

The read-only option to the mount command does not protect data! Disks mounted with the read-only option can still be written to using the raw device interface to the disk—the option protects only access to the files via the block device interface. Furthermore, an attacker who has gained the appropriate privileges (e.g., root) can always remount the disk read/write.

The existence of the read-only option to the mount command is largely for when a physically protected disk is mounted read-only; without the option, Unix would attempt to modify the “last access” times of files and directories as they were read, which would lead to many error messages.

If it is possible to structure the system to place all the commands, system libraries, system databases, and important directories on read-only media, the system can be made considerably safer. To modify one of these files, an unauthorized user would require physical access to the disk drive to reset the switch, and sufficient access to the system (physical access or operator privileges) to remount the partition. In many cases, this access can be severely restricted. Unmounting and remounting a disk would likely be noticed, too!

In those cases in which the owner needs to modify software or install updates, it should be a simple matter to shut down the system in an orderly manner and then make the necessary changes. As an added benefit, the additional effort required to make changes in a multiuser system might help deter spur-of-the-moment changes, or the installation of software that is too experimental in nature. (Of course, this whole mechanism would not be very helpful to a dedicated Linux hacker who may be making daily changes. As with any approach, it isn’t for everyone.)

The way to organize a system to use read-only disks requires assistance from the vendor of the system. The vendor needs to structure the system so that the few system files that need to be modified on a frequent basis are located on a different partition from the system files that will be protected. These special files include log files, /etc/motd, utmp, and other files that might need to be altered as part of regular operation (including, perhaps, /etc/passwd if your users change passwords or shells frequently). Most modern systems have symbolic links that can be used for this purpose. In fact, systems that support diskless workstations are often already configured in this manner: volatile files are symbolically linked to a location on a /var partition. This link allows the binaries to be mounted read-only from the server and shared by many clients.

There are some additional benefits to using read-only storage for system files. Besides the control over modification (friendly and otherwise) already noted, consider the following:

  • You need to do backups of the read-only partitions only once after each change—there is no need to waste time or tapes performing daily or weekly backups.

  • In a large organization, you can put a “standard” set of binaries up on a network file server—or cut a “standard” CD-ROM to be used by all the systems making configuration management and portability much simpler.

  • There is no need to set disk quotas on these partitions, as the contents will not grow except in well-understood (and monitored) ways.

  • There is no need to run periodic file clean or scan operations on these disks, as the contents will not change.

There are some drawbacks and limitations to read-only media, however:

  • This media is difficult to employ for user data protection. Usually, user data is too volatile for read-only media. Furthermore, it would require that the system administrator shut down the system each time a user wanted to make a change. This requirement would not work well in a multiuser environment.

  • Many operating systems will not operate properly from read-only media. Although most will boot from read-only media, but usually this option is only for installation or diagnostics.

  • Few hardware vendors supply disks with hardware write protection.

  • Using read-only media means that most computers will require at least two physical disks (unless you import network partitions), further increasing costs.

  • CD-ROM and DVD drives are dramatically slower than standard magnetic read/write media. As a result, many systems will not perform well when running these devices.



[297] In one presentation by Professor Matt Bishop of UC Davis, he concluded that as many as 95% of reported Unix security incidents that he studied might have been the results of misconfiguration!

[298] When using the ext2fs or ext3fs filesystems; other filesystems may not support the immutable and append-only attributes.

[299] In Linux, the chattr command is used to modify these flags.

[300] And init only lowers it when the system is shutting down.

[301] As of the Linux kernel 2.4.18, however, Linux typically does not implement kernel security levels. Thus, although the superuser can set a file as immutable or append-only, an attacker who gains superuser privileges can simply unset these attributes. There are kernel patches that can make this more difficult by restricting the kernel capabilities that root has access to, but they are not as complete as the BSD approach.

[302] For years and years, all disk drives came with write-protect switches. In the 1980s, these switches slowly started disappearing from disk drives, and by the 1990s they had all but vanished because of the added cost in equipping systems with an extra piece of hardware. Now, in the 21st century, write-protect switches are beginning to return to disk drive systems because of the security that they provide.