Table of Contents for
Practical UNIX and Internet Security, 3rd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Practical UNIX and Internet Security, 3rd Edition by Alan Schwartz Published by O'Reilly Media, Inc., 2003
  1. Cover
  2. Practical Unix & Internet Security, 3rd Edition
  3. A Note Regarding Supplemental Files
  4. Preface
  5. Unix “Security”?
  6. Scope of This Book
  7. Which Unix System?
  8. Conventions Used in This Book
  9. Comments and Questions
  10. Acknowledgments
  11. A Note to Would-Be Attackers
  12. I. Computer Security Basics
  13. 1. Introduction: Some Fundamental Questions
  14. What Is Computer Security?
  15. What Is an Operating System?
  16. What Is a Deployment Environment?
  17. Summary
  18. 2. Unix History and Lineage
  19. History of Unix
  20. Security and Unix
  21. Role of This Book
  22. Summary
  23. 3. Policies and Guidelines
  24. Planning Your Security Needs
  25. Risk Assessment
  26. Cost-Benefit Analysis and Best Practices
  27. Policy
  28. Compliance Audits
  29. Outsourcing Options
  30. The Problem with Security Through Obscurity
  31. Summary
  32. II. Security Building Blocks
  33. 4. Users, Passwords, and Authentication
  34. Logging in with Usernames and Passwords
  35. The Care and Feeding of Passwords
  36. How Unix Implements Passwords
  37. Network Account and Authorization Systems
  38. Pluggable Authentication Modules (PAM)
  39. Summary
  40. 5. Users, Groups, and the Superuser
  41. Users and Groups
  42. The Superuser (root)
  43. The su Command: Changing Who You Claim to Be
  44. Restrictions on the Superuser
  45. Summary
  46. 6. Filesystems and Security
  47. Understanding Filesystems
  48. File Attributes and Permissions
  49. chmod: Changing a File’s Permissions
  50. The umask
  51. SUID and SGID
  52. Device Files
  53. Changing a File’s Owner or Group
  54. Summary
  55. 7. Cryptography Basics
  56. Understanding Cryptography
  57. Symmetric Key Algorithms
  58. Public Key Algorithms
  59. Message Digest Functions
  60. Summary
  61. 8. Physical Security for Servers
  62. Planning for the Forgotten Threats
  63. Protecting Computer Hardware
  64. Preventing Theft
  65. Protecting Your Data
  66. Story: A Failed Site Inspection
  67. Summary
  68. 9. Personnel Security
  69. Background Checks
  70. On the Job
  71. Departure
  72. Other People
  73. Summary
  74. III. Network and Internet Security
  75. 10. Modems and Dialup Security
  76. Modems: Theory of Operation
  77. Modems and Security
  78. Modems and Unix
  79. Additional Security for Modems
  80. Summary
  81. 11. TCP/IP Networks
  82. Networking
  83. IP: The Internet Protocol
  84. IP Security
  85. Summary
  86. 12. Securing TCP and UDP Services
  87. Understanding Unix Internet Servers and Services
  88. Controlling Access to Servers
  89. Primary Unix Network Services
  90. Managing Services Securely
  91. Putting It All Together: An Example
  92. Summary
  93. 13. Sun RPC
  94. Remote Procedure Call (RPC)
  95. Secure RPC (AUTH_DES)
  96. Summary
  97. 14. Network-Based Authentication Systems
  98. Sun’s Network Information Service (NIS)
  99. Sun’s NIS+
  100. Kerberos
  101. LDAP
  102. Other Network Authentication Systems
  103. Summary
  104. 15. Network Filesystems
  105. Understanding NFS
  106. Server-Side NFS Security
  107. Client-Side NFS Security
  108. Improving NFS Security
  109. Some Last Comments on NFS
  110. Understanding SMB
  111. Summary
  112. 16. Secure Programming Techniques
  113. One Bug Can Ruin Your Whole Day . . .
  114. Tips on Avoiding Security-Related Bugs
  115. Tips on Writing Network Programs
  116. Tips on Writing SUID/SGID Programs
  117. Using chroot( )
  118. Tips on Using Passwords
  119. Tips on Generating Random Numbers
  120. Summary
  121. IV. Secure Operations
  122. 17. Keeping Up to Date
  123. Software Management Systems
  124. Updating System Software
  125. Summary
  126. 18. Backups
  127. Why Make Backups?
  128. Backing Up System Files
  129. Software for Backups
  130. Summary
  131. 19. Defending Accounts
  132. Dangerous Accounts
  133. Monitoring File Format
  134. Restricting Logins
  135. Managing Dormant Accounts
  136. Protecting the root Account
  137. One-Time Passwords
  138. Administrative Techniques for Conventional Passwords
  139. Intrusion Detection Systems
  140. Summary
  141. 20. Integrity Management
  142. The Need for Integrity
  143. Protecting Integrity
  144. Detecting Changes After the Fact
  145. Integrity-Checking Tools
  146. Summary
  147. 21. Auditing, Logging, and Forensics
  148. Unix Log File Utilities
  149. Process Accounting: The acct/pacct File
  150. Program-Specific Log Files
  151. Designing a Site-Wide Log Policy
  152. Handwritten Logs
  153. Managing Log Files
  154. Unix Forensics
  155. Summary
  156. V. Handling Security Incidents
  157. 22. Discovering a Break-in
  158. Prelude
  159. Discovering an Intruder
  160. Cleaning Up After the Intruder
  161. Case Studies
  162. Summary
  163. 23. Protecting Against Programmed Threats
  164. Programmed Threats: Definitions
  165. Damage
  166. Authors
  167. Entry
  168. Protecting Yourself
  169. Preventing Attacks
  170. Summary
  171. 24. Denial of Service Attacks and Solutions
  172. Types of Attacks
  173. Destructive Attacks
  174. Overload Attacks
  175. Network Denial of Service Attacks
  176. Summary
  177. 25. Computer Crime
  178. Your Legal Options After a Break-in
  179. Criminal Hazards
  180. Criminal Subject Matter
  181. Summary
  182. 26. Who Do You Trust?
  183. Can You Trust Your Computer?
  184. Can You Trust Your Suppliers?
  185. Can You Trust People?
  186. Summary
  187. VI. Appendixes
  188. A. Unix Security Checklist
  189. Preface
  190. Chapter 1: Introduction: Some Fundamental Questions
  191. Chapter 2: Unix History and Lineage
  192. Chapter 3: Policies and Guidelines
  193. Chapter 4: Users, Passwords, and Authentication
  194. Chapter 5: Users, Groups, and the Superuser
  195. Chapter 6: Filesystems and Security
  196. Chapter 7: Cryptography Basics
  197. Chapter 8: Physical Security for Servers
  198. Chapter 9: Personnel Security
  199. Chapter 10: Modems and Dialup Security
  200. Chapter 11: TCP/IP Networks
  201. Chapter 12: Securing TCP and UDP Services
  202. Chapter 13: Sun RPC
  203. Chapter 14: Network-Based Authentication Systems
  204. Chapter 15: Network Filesystems
  205. Chapter 16: Secure Programming Techniques
  206. Chapter 17: Keeping Up to Date
  207. Chapter 18: Backups
  208. Chapter 19: Defending Accounts
  209. Chapter 20: Integrity Management
  210. Chapter 21: Auditing, Logging, and Forensics
  211. Chapter 22: Discovering a Break-In
  212. Chapter 23: Protecting Against Programmed Threats
  213. Chapter 24: Denial of Service Attacks and Solutions
  214. Chapter 25: Computer Crime
  215. Chapter 26: Who Do You Trust?
  216. Appendix A: Unix Security Checklist
  217. Appendix B: Unix Processes
  218. Appendixes C, D, and E: Paper Sources, Electronic Sources, and Organizations
  219. B. Unix Processes
  220. About Processes
  221. Signals
  222. Controlling and Examining Processes
  223. Starting Up Unix and Logging In
  224. C. Paper Sources
  225. Unix Security References
  226. Other Computer References
  227. D. Electronic Resources
  228. Mailing Lists
  229. Web Sites
  230. Usenet Groups
  231. Software Resources
  232. E. Organizations
  233. Professional Organizations
  234. U.S. Government Organizations
  235. Emergency Response Organizations
  236. Index
  237. Index
  238. Index
  239. Index
  240. Index
  241. Index
  242. Index
  243. Index
  244. Index
  245. Index
  246. Index
  247. Index
  248. Index
  249. Index
  250. Index
  251. Index
  252. Index
  253. Index
  254. Index
  255. Index
  256. Index
  257. Index
  258. Index
  259. Index
  260. Index
  261. Index
  262. Index
  263. About the Authors
  264. Colophon
  265. Copyright

Software for Backups

There are a number of software packages that allow you to perform backups. Some are vendor-specific, and others are quite commonly available. Each may have particular benefits in a particular environment. We’ll outline a few of the more common ones here, including a few that you might not otherwise consider. You should consult your local documentation to see if there are special programs available with your system.

Simple Local Copies

The simplest form of backup is to make simple copies of your files and directories. You might make those copies to local disk, to removable disk, to tape, or to some other media. Some file copy programs will properly duplicate modification and access times, and copy owner and protection information, if you are the superuser or if the files belong to you. They seldom recreate links, however. Examples include:

cp

The standard command for copying individual files. Some versions support a -R or -r option to copy an entire directory tree.

dd

This command can be used to copy a whole disk partition at one time by specifying the names of partition device files as arguments. This process should be done with great care if the source partition is mounted: in such a case, the device should be for the block version of the disk rather than the character version. Never copy onto a mounted partition—unless you want to destroy the partition and cause an abrupt system halt!

Warning

Be careful when backing up live filesystems! If you’re not going to bring your system down to single-user mode during backups (and few users are willing to tolerate this kind of downtime), you should be aware of how your backup procedure will handle attempts to back up a file that’s in use by another process, particularly a process that may lock the file, write to the file, or unlink the file during the backup process. In some cases, you may need to write a script to temporarily stop certain processes (such as relational databases) during the backup and restart them afterwards in order to be sure that the backup file is not corrupted.

Simple Archives

There are several programs that are available to make simple archives packed into disk files or onto tape. These are usually capable of storing all directory information about a file, and restoring much of it if the correct options are used. Running these programs may result in a change of either (or both) the atime and the ctime of items archived, however (see Chapter 6).

ar

Simple file archiver. Largely obsolete for backups (although still used for creating Unix libraries).

tar

Simple tape archiver. Can create archives to files, tapes, or elsewhere. This choice seems to be the most widely used and simple archive program.

cpio

Another simple archive program. This program can create portable archives in plain ASCII of even binary files, if invoked with the correct options.

pax

The portable archiver/exchange tool, which is defined in the POSIX standard. This program combines tar and cpio functionality. It uses tar as its default file format.

Specialized Backup Programs

There are several dedicated backup programs:

dump/restore

This program is the “classic” one for archiving a whole partition at once, and for the associated file restorations.[272] Many versions of this program exist; all back up from the raw disk device, thus bypassing calls that would change any of the times present in inodes for files and directories. This program can also make the backups quickly.

backup

Some SVR4-based systems have a suite of programs named, collectively, backup. These are also designed specifically to do backups of files and whole filesystems.

Network Backup Systems

A few programs can be used to do backups across a network link. Thus, you can do backups on one machine and write the results to another. An obvious example would be using a program that can write to stdout, and then piping the output to a remote shell. Some programs provide for compression (to improve backup speed on slower networks) and/or encryption of the data stream:

rdump/rrestore

A network version of the dump and restore commands. It uses a dedicated process on a machine that has a tape drive, and sends the data to that process. Thus, it allows a tape drive to be shared by a whole network of machines.

rsync

A program designed to remotely synchronize two filesystems. One filesystem is the master; changes in that one are propagated to the slave. rsync is optimized for use with logfiles: if a 100 MB file has 1 megabyte appended, rsync can detect this and copy only over the last megabyte.

scp

Enables you to copy a file or a whole directory tree to a remote machine using the SSH protocol, which avoids sending cleartext passwords over the network and can encrypt the data stream. It is based on the older rcp command, which is unsecure.

unison

Designed for two-way synchronization between two or more filesystems. When unison first runs, it creates a database that describes the current state of both filesystems. Thereafter, it can automatically propagate file additions, changes, and deletions from one filesystem to the other.

There are also several backup programs specifically designed to back up data from clients to a tape drive on a central server over a network. The central server is typically outfitted with a large tape drive or jukebox and is configured to back up the clients at night.

Amanda

The Advanced Maryland Automatic Network Disk Archiver (http://www.amanda.org). Amanda is a free software, client/server backup system that’s over 10 years old and still actively maintained. The backup server (the host with the tape drive) connects to each backup client and instructs it to transfer data, which the server writes to tape using standard Unix utilities such as dump or tar. It is compatible with many tape drivers and changers, and has its own tape management system. In conjunction with Samba, it can back up Windows hosts as well.

Commercial solutions

Like Amanda, most commercial backup systems are based on a client/server architecture to allow a backup server to perform unattended backups of Unix, Windows, and Macintosh hosts over a network. Key features in commercial offerings are:

  • Indexing files or databases of files to make backups easier.

  • Staging little-used files to slower storage (such as write-once optical media).

Unfortunately, there are drawbacks for many uses, notably lack of portability across multiple platforms, and compatibility with sites that may not have the software installed. Be sure to fully evaluate the conditions under which you’ll need to use the program and decide on a backup strategy before purchasing the software.

Encrypting Your Backups

You can improvise your own backup encryption if you have an encryption program that can be used as a filter and you use a backup program that can write to a file, such as the dump, cpio, or tar commands. For example, to make an encrypted tape archive using the tar command and the OpenSSL encryption program, you might use the following command:

# dirs and files

Although software encryption is not foolproof (for example, the software encryption program can be compromised to record all passwords), this method is certainly preferable to storing sensitive information on unencrypted backups.

Here is an example: suppose that you have the OpenSSL encryption program, which can prompt the user for a passphrase and then encrypt its standard input to standard output. You could use this program with the dump (called ufsdump under Solaris) program to back up the filesystem /u to the device /dev/rmt8 with the command:

# dump f - /u | openssl enc -des3 -salt | dd bs=10240 of=/dev/rmt8
enter des-ede3-cbc encryption password:

If you wanted to back up the filesystem with tar , you would instead use the command:

# tar cf - /u | openssl enc -des3 -salt | dd bs=10240 of=/dev/rmt8
enter des-ede3-cbc encryption password:

To read these files back, you would use the following command sequences:

# dd bs=10240 if=/dev/rmt8 | openssl enc -d -des3 -salt | restore fi -
enter des-ede3-cbc decryption password:

and:

# dd bs=10240 if=/dev/rmt8 | openssl enc -d -des3 -salt | tar xpBfv -
enter des-ede3-cbc decryption password:

In both of these examples, the backup programs are instructed to send the backup of the filesystems to standard output. The output is then encrypted and written to the tape drive.

Tip

If you encrypt the backup of a filesystem and you forget the key, the information stored on the backup will be unusable. Also, note that many systems do not encrypt individual files separately; you may have to decrypt (and in some cases restore) the entire partition that you backed up in order to restore a single file.



[272] On Linux and BSD-based systems, a “no dump” file attribute can be set on files and directories to exclude them from dump. From a security standpoint, this is probably a bad idea; it’s too easy to fail to notice the file attribute until you need to restore a file and discover that you’d made it “no dump.” If you are concerned about backing up confidential files, encrypt your backups.