Table of Contents for
Practical UNIX and Internet Security, 3rd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Practical UNIX and Internet Security, 3rd Edition by Alan Schwartz Published by O'Reilly Media, Inc., 2003
  1. Cover
  2. Practical Unix & Internet Security, 3rd Edition
  3. A Note Regarding Supplemental Files
  4. Preface
  5. Unix “Security”?
  6. Scope of This Book
  7. Which Unix System?
  8. Conventions Used in This Book
  9. Comments and Questions
  10. Acknowledgments
  11. A Note to Would-Be Attackers
  12. I. Computer Security Basics
  13. 1. Introduction: Some Fundamental Questions
  14. What Is Computer Security?
  15. What Is an Operating System?
  16. What Is a Deployment Environment?
  17. Summary
  18. 2. Unix History and Lineage
  19. History of Unix
  20. Security and Unix
  21. Role of This Book
  22. Summary
  23. 3. Policies and Guidelines
  24. Planning Your Security Needs
  25. Risk Assessment
  26. Cost-Benefit Analysis and Best Practices
  27. Policy
  28. Compliance Audits
  29. Outsourcing Options
  30. The Problem with Security Through Obscurity
  31. Summary
  32. II. Security Building Blocks
  33. 4. Users, Passwords, and Authentication
  34. Logging in with Usernames and Passwords
  35. The Care and Feeding of Passwords
  36. How Unix Implements Passwords
  37. Network Account and Authorization Systems
  38. Pluggable Authentication Modules (PAM)
  39. Summary
  40. 5. Users, Groups, and the Superuser
  41. Users and Groups
  42. The Superuser (root)
  43. The su Command: Changing Who You Claim to Be
  44. Restrictions on the Superuser
  45. Summary
  46. 6. Filesystems and Security
  47. Understanding Filesystems
  48. File Attributes and Permissions
  49. chmod: Changing a File’s Permissions
  50. The umask
  51. SUID and SGID
  52. Device Files
  53. Changing a File’s Owner or Group
  54. Summary
  55. 7. Cryptography Basics
  56. Understanding Cryptography
  57. Symmetric Key Algorithms
  58. Public Key Algorithms
  59. Message Digest Functions
  60. Summary
  61. 8. Physical Security for Servers
  62. Planning for the Forgotten Threats
  63. Protecting Computer Hardware
  64. Preventing Theft
  65. Protecting Your Data
  66. Story: A Failed Site Inspection
  67. Summary
  68. 9. Personnel Security
  69. Background Checks
  70. On the Job
  71. Departure
  72. Other People
  73. Summary
  74. III. Network and Internet Security
  75. 10. Modems and Dialup Security
  76. Modems: Theory of Operation
  77. Modems and Security
  78. Modems and Unix
  79. Additional Security for Modems
  80. Summary
  81. 11. TCP/IP Networks
  82. Networking
  83. IP: The Internet Protocol
  84. IP Security
  85. Summary
  86. 12. Securing TCP and UDP Services
  87. Understanding Unix Internet Servers and Services
  88. Controlling Access to Servers
  89. Primary Unix Network Services
  90. Managing Services Securely
  91. Putting It All Together: An Example
  92. Summary
  93. 13. Sun RPC
  94. Remote Procedure Call (RPC)
  95. Secure RPC (AUTH_DES)
  96. Summary
  97. 14. Network-Based Authentication Systems
  98. Sun’s Network Information Service (NIS)
  99. Sun’s NIS+
  100. Kerberos
  101. LDAP
  102. Other Network Authentication Systems
  103. Summary
  104. 15. Network Filesystems
  105. Understanding NFS
  106. Server-Side NFS Security
  107. Client-Side NFS Security
  108. Improving NFS Security
  109. Some Last Comments on NFS
  110. Understanding SMB
  111. Summary
  112. 16. Secure Programming Techniques
  113. One Bug Can Ruin Your Whole Day . . .
  114. Tips on Avoiding Security-Related Bugs
  115. Tips on Writing Network Programs
  116. Tips on Writing SUID/SGID Programs
  117. Using chroot( )
  118. Tips on Using Passwords
  119. Tips on Generating Random Numbers
  120. Summary
  121. IV. Secure Operations
  122. 17. Keeping Up to Date
  123. Software Management Systems
  124. Updating System Software
  125. Summary
  126. 18. Backups
  127. Why Make Backups?
  128. Backing Up System Files
  129. Software for Backups
  130. Summary
  131. 19. Defending Accounts
  132. Dangerous Accounts
  133. Monitoring File Format
  134. Restricting Logins
  135. Managing Dormant Accounts
  136. Protecting the root Account
  137. One-Time Passwords
  138. Administrative Techniques for Conventional Passwords
  139. Intrusion Detection Systems
  140. Summary
  141. 20. Integrity Management
  142. The Need for Integrity
  143. Protecting Integrity
  144. Detecting Changes After the Fact
  145. Integrity-Checking Tools
  146. Summary
  147. 21. Auditing, Logging, and Forensics
  148. Unix Log File Utilities
  149. Process Accounting: The acct/pacct File
  150. Program-Specific Log Files
  151. Designing a Site-Wide Log Policy
  152. Handwritten Logs
  153. Managing Log Files
  154. Unix Forensics
  155. Summary
  156. V. Handling Security Incidents
  157. 22. Discovering a Break-in
  158. Prelude
  159. Discovering an Intruder
  160. Cleaning Up After the Intruder
  161. Case Studies
  162. Summary
  163. 23. Protecting Against Programmed Threats
  164. Programmed Threats: Definitions
  165. Damage
  166. Authors
  167. Entry
  168. Protecting Yourself
  169. Preventing Attacks
  170. Summary
  171. 24. Denial of Service Attacks and Solutions
  172. Types of Attacks
  173. Destructive Attacks
  174. Overload Attacks
  175. Network Denial of Service Attacks
  176. Summary
  177. 25. Computer Crime
  178. Your Legal Options After a Break-in
  179. Criminal Hazards
  180. Criminal Subject Matter
  181. Summary
  182. 26. Who Do You Trust?
  183. Can You Trust Your Computer?
  184. Can You Trust Your Suppliers?
  185. Can You Trust People?
  186. Summary
  187. VI. Appendixes
  188. A. Unix Security Checklist
  189. Preface
  190. Chapter 1: Introduction: Some Fundamental Questions
  191. Chapter 2: Unix History and Lineage
  192. Chapter 3: Policies and Guidelines
  193. Chapter 4: Users, Passwords, and Authentication
  194. Chapter 5: Users, Groups, and the Superuser
  195. Chapter 6: Filesystems and Security
  196. Chapter 7: Cryptography Basics
  197. Chapter 8: Physical Security for Servers
  198. Chapter 9: Personnel Security
  199. Chapter 10: Modems and Dialup Security
  200. Chapter 11: TCP/IP Networks
  201. Chapter 12: Securing TCP and UDP Services
  202. Chapter 13: Sun RPC
  203. Chapter 14: Network-Based Authentication Systems
  204. Chapter 15: Network Filesystems
  205. Chapter 16: Secure Programming Techniques
  206. Chapter 17: Keeping Up to Date
  207. Chapter 18: Backups
  208. Chapter 19: Defending Accounts
  209. Chapter 20: Integrity Management
  210. Chapter 21: Auditing, Logging, and Forensics
  211. Chapter 22: Discovering a Break-In
  212. Chapter 23: Protecting Against Programmed Threats
  213. Chapter 24: Denial of Service Attacks and Solutions
  214. Chapter 25: Computer Crime
  215. Chapter 26: Who Do You Trust?
  216. Appendix A: Unix Security Checklist
  217. Appendix B: Unix Processes
  218. Appendixes C, D, and E: Paper Sources, Electronic Sources, and Organizations
  219. B. Unix Processes
  220. About Processes
  221. Signals
  222. Controlling and Examining Processes
  223. Starting Up Unix and Logging In
  224. C. Paper Sources
  225. Unix Security References
  226. Other Computer References
  227. D. Electronic Resources
  228. Mailing Lists
  229. Web Sites
  230. Usenet Groups
  231. Software Resources
  232. E. Organizations
  233. Professional Organizations
  234. U.S. Government Organizations
  235. Emergency Response Organizations
  236. Index
  237. Index
  238. Index
  239. Index
  240. Index
  241. Index
  242. Index
  243. Index
  244. Index
  245. Index
  246. Index
  247. Index
  248. Index
  249. Index
  250. Index
  251. Index
  252. Index
  253. Index
  254. Index
  255. Index
  256. Index
  257. Index
  258. Index
  259. Index
  260. Index
  261. Index
  262. Index
  263. About the Authors
  264. Colophon
  265. Copyright

Network Account and Authorization Systems

These days, many organizations have moved away from large time-sharing computers and invested in large client/server networks containing many servers and dozens or hundreds of workstations. These systems are usually set up so that any user can make use of any workstation in a group or in the entire organization. When these systems are in use, every user effectively has an account on every workstation. These systems provide for automatic account creation and password synchronization between some or many computer systems.

When you are working with a large, distributed system, it is not practical to ensure that every computer has the same /etc/passwd file. For this reason, there are now several different commercial systems available that make the information traditionally stored in the /etc/passwd file available over a network.

Using Network Authorization Systems

Five network authorization systems in use today are:

  • Sun Microsystems’ Network Information System (NIS) and NIS+.

  • MIT Kerberos, which is now part of the OSF Distributed Computing Environment (DCE) and Microsoft’s Windows XP. Kerberos clients are also included with Solaris, Linux, and several other Unix versions.

  • NetInfo, originally developed by NeXT Computer, now part of Mac OS X.

  • RADIUS, the Remote Authentication Dial-In User Service. Traditionally, RADIUS has been used by many ISPs to provide for authentication of dialup users. It has been extended to provide authentication for other devices (e.g., routers) and for password synchronization in a Unix environment.

  • Authentication systems that store account information in a Lightweight Directory Access Protocol (LDAP) server.

These systems all take the information that is usually stored in each workstation’s /etc/passwd file and store it in one or more network servers. Some systems use the network-based account to supersede the accounts on the local system; others augment the local accounts with network-based accounts.

Some of these systems provide for multiple servers or backup caching, should the primary server be unavailable. Others do not, and instead create a single point of failure for the entire network.

At some sites, administrators prefer not to use network database management systems. Instead, each computer might have its own accounts. Alternatively, one computer might be regarded as the “master computer,” and that computer’s /etc/passwd and /etc/shadow files are then distributed to other computers using scp, rdist, or a similar system. There are several reasons that an administrator might make such a decision.

  • Managing a network-based authentication system is often considerably more complex than managing accounts on a single system.

  • Unless redundant servers are provided, a crashed authentication server or failed network segment can negatively impact a disproportionately large number of users.

  • The administrator might be fearful that the central authentication server could be compromised, which would allow an attacker to create an account on any computer that the attacker wished.

The drawback to this approach is that it often requires the administrator to intervene to change a user password or shell entry. In most cases, the energy spent developing and fielding custom solutions would be better spent mastering systems that are already in existence and, in many cases, preinstalled on most Unix systems.

Tip

Because there are so many different ways to access the information that has traditionally been stored in the /etc/passwd file, throughout this book we will simply use the phrase “password file” or "/etc/passwd " as a shorthand for the multitude of different systems.

Viewing Accounts in the Network Database

If you are using one of these systems and wish to retrieve the contents of the password database, you cannot simply cat the /etc/passwd file. Instead, you must use a command that is specific to your system to view the account database.

Sun’s NIS service supplements the information stored in the workstations’ own files. If you are using NIS and you wish to get a list of every user account, you would use the following command:

% cat /etc/passwd;ypcat passwd

NIS and NIS+

Sun’s NIS+ service can be configured to supplement or substitute its user account entries for those entries in the /etc/passwd file, depending on the contents of the /etc/nsswitch.conf file. If you are using a system that runs NIS+, you should use the niscat command and specify your NIS+ domain. For example:

% niscat -o passwd.bigco

Kerboros DCE

Computers that are using DCE use an encrypted network database system as an alternative to encrypted passwords and /etc/passwd files. However, to maintain compatibility, some of them have programs that run on a regular basis to create a local /etc/passwd file. You should check your manuals for information about your specific system.

NetInfo

On Mac OS X systems running NetInfo, you can view the account database using the command:

% nidump passwd . 

Warning

Note again that Mac OS X’s system exposes the encrypted password field when the nidump command is used. Thus, although Mac OS X uses the FreeBSD master.passwd file, it still exposes the entire password database to anyone who wants it. This happens whether or not a network server is in use.

RADIUS

Systems that are configured for RADIUS generally do not make it possible to access the entire account database at once.

LDAP

LDAP is used to build a true network authentication system; rather than create local /etc/passwd entries, systems that use LDAP for authentication are configured to check logins against the network’s LDAP server each time (though some configurations do include a name service-caching daemon[46] [nscd] that caches LDAP responses locally to reduce the number of network authentications required). LDAP is covered in detail in Chapter 14.



[46] Don’t confuse this “name service” with Domain Name Service (DNS). Although nscd can cache DNS lookups of hostnames, its primary strength is its ability to cache lookups of users, groups, and passwords made through local files, NIS, NIS+, LDAP, and other authentication systems.