Table of Contents for
Practical UNIX and Internet Security, 3rd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Practical UNIX and Internet Security, 3rd Edition by Alan Schwartz Published by O'Reilly Media, Inc., 2003
  1. Cover
  2. Practical Unix & Internet Security, 3rd Edition
  3. A Note Regarding Supplemental Files
  4. Preface
  5. Unix “Security”?
  6. Scope of This Book
  7. Which Unix System?
  8. Conventions Used in This Book
  9. Comments and Questions
  10. Acknowledgments
  11. A Note to Would-Be Attackers
  12. I. Computer Security Basics
  13. 1. Introduction: Some Fundamental Questions
  14. What Is Computer Security?
  15. What Is an Operating System?
  16. What Is a Deployment Environment?
  17. Summary
  18. 2. Unix History and Lineage
  19. History of Unix
  20. Security and Unix
  21. Role of This Book
  22. Summary
  23. 3. Policies and Guidelines
  24. Planning Your Security Needs
  25. Risk Assessment
  26. Cost-Benefit Analysis and Best Practices
  27. Policy
  28. Compliance Audits
  29. Outsourcing Options
  30. The Problem with Security Through Obscurity
  31. Summary
  32. II. Security Building Blocks
  33. 4. Users, Passwords, and Authentication
  34. Logging in with Usernames and Passwords
  35. The Care and Feeding of Passwords
  36. How Unix Implements Passwords
  37. Network Account and Authorization Systems
  38. Pluggable Authentication Modules (PAM)
  39. Summary
  40. 5. Users, Groups, and the Superuser
  41. Users and Groups
  42. The Superuser (root)
  43. The su Command: Changing Who You Claim to Be
  44. Restrictions on the Superuser
  45. Summary
  46. 6. Filesystems and Security
  47. Understanding Filesystems
  48. File Attributes and Permissions
  49. chmod: Changing a File’s Permissions
  50. The umask
  51. SUID and SGID
  52. Device Files
  53. Changing a File’s Owner or Group
  54. Summary
  55. 7. Cryptography Basics
  56. Understanding Cryptography
  57. Symmetric Key Algorithms
  58. Public Key Algorithms
  59. Message Digest Functions
  60. Summary
  61. 8. Physical Security for Servers
  62. Planning for the Forgotten Threats
  63. Protecting Computer Hardware
  64. Preventing Theft
  65. Protecting Your Data
  66. Story: A Failed Site Inspection
  67. Summary
  68. 9. Personnel Security
  69. Background Checks
  70. On the Job
  71. Departure
  72. Other People
  73. Summary
  74. III. Network and Internet Security
  75. 10. Modems and Dialup Security
  76. Modems: Theory of Operation
  77. Modems and Security
  78. Modems and Unix
  79. Additional Security for Modems
  80. Summary
  81. 11. TCP/IP Networks
  82. Networking
  83. IP: The Internet Protocol
  84. IP Security
  85. Summary
  86. 12. Securing TCP and UDP Services
  87. Understanding Unix Internet Servers and Services
  88. Controlling Access to Servers
  89. Primary Unix Network Services
  90. Managing Services Securely
  91. Putting It All Together: An Example
  92. Summary
  93. 13. Sun RPC
  94. Remote Procedure Call (RPC)
  95. Secure RPC (AUTH_DES)
  96. Summary
  97. 14. Network-Based Authentication Systems
  98. Sun’s Network Information Service (NIS)
  99. Sun’s NIS+
  100. Kerberos
  101. LDAP
  102. Other Network Authentication Systems
  103. Summary
  104. 15. Network Filesystems
  105. Understanding NFS
  106. Server-Side NFS Security
  107. Client-Side NFS Security
  108. Improving NFS Security
  109. Some Last Comments on NFS
  110. Understanding SMB
  111. Summary
  112. 16. Secure Programming Techniques
  113. One Bug Can Ruin Your Whole Day . . .
  114. Tips on Avoiding Security-Related Bugs
  115. Tips on Writing Network Programs
  116. Tips on Writing SUID/SGID Programs
  117. Using chroot( )
  118. Tips on Using Passwords
  119. Tips on Generating Random Numbers
  120. Summary
  121. IV. Secure Operations
  122. 17. Keeping Up to Date
  123. Software Management Systems
  124. Updating System Software
  125. Summary
  126. 18. Backups
  127. Why Make Backups?
  128. Backing Up System Files
  129. Software for Backups
  130. Summary
  131. 19. Defending Accounts
  132. Dangerous Accounts
  133. Monitoring File Format
  134. Restricting Logins
  135. Managing Dormant Accounts
  136. Protecting the root Account
  137. One-Time Passwords
  138. Administrative Techniques for Conventional Passwords
  139. Intrusion Detection Systems
  140. Summary
  141. 20. Integrity Management
  142. The Need for Integrity
  143. Protecting Integrity
  144. Detecting Changes After the Fact
  145. Integrity-Checking Tools
  146. Summary
  147. 21. Auditing, Logging, and Forensics
  148. Unix Log File Utilities
  149. Process Accounting: The acct/pacct File
  150. Program-Specific Log Files
  151. Designing a Site-Wide Log Policy
  152. Handwritten Logs
  153. Managing Log Files
  154. Unix Forensics
  155. Summary
  156. V. Handling Security Incidents
  157. 22. Discovering a Break-in
  158. Prelude
  159. Discovering an Intruder
  160. Cleaning Up After the Intruder
  161. Case Studies
  162. Summary
  163. 23. Protecting Against Programmed Threats
  164. Programmed Threats: Definitions
  165. Damage
  166. Authors
  167. Entry
  168. Protecting Yourself
  169. Preventing Attacks
  170. Summary
  171. 24. Denial of Service Attacks and Solutions
  172. Types of Attacks
  173. Destructive Attacks
  174. Overload Attacks
  175. Network Denial of Service Attacks
  176. Summary
  177. 25. Computer Crime
  178. Your Legal Options After a Break-in
  179. Criminal Hazards
  180. Criminal Subject Matter
  181. Summary
  182. 26. Who Do You Trust?
  183. Can You Trust Your Computer?
  184. Can You Trust Your Suppliers?
  185. Can You Trust People?
  186. Summary
  187. VI. Appendixes
  188. A. Unix Security Checklist
  189. Preface
  190. Chapter 1: Introduction: Some Fundamental Questions
  191. Chapter 2: Unix History and Lineage
  192. Chapter 3: Policies and Guidelines
  193. Chapter 4: Users, Passwords, and Authentication
  194. Chapter 5: Users, Groups, and the Superuser
  195. Chapter 6: Filesystems and Security
  196. Chapter 7: Cryptography Basics
  197. Chapter 8: Physical Security for Servers
  198. Chapter 9: Personnel Security
  199. Chapter 10: Modems and Dialup Security
  200. Chapter 11: TCP/IP Networks
  201. Chapter 12: Securing TCP and UDP Services
  202. Chapter 13: Sun RPC
  203. Chapter 14: Network-Based Authentication Systems
  204. Chapter 15: Network Filesystems
  205. Chapter 16: Secure Programming Techniques
  206. Chapter 17: Keeping Up to Date
  207. Chapter 18: Backups
  208. Chapter 19: Defending Accounts
  209. Chapter 20: Integrity Management
  210. Chapter 21: Auditing, Logging, and Forensics
  211. Chapter 22: Discovering a Break-In
  212. Chapter 23: Protecting Against Programmed Threats
  213. Chapter 24: Denial of Service Attacks and Solutions
  214. Chapter 25: Computer Crime
  215. Chapter 26: Who Do You Trust?
  216. Appendix A: Unix Security Checklist
  217. Appendix B: Unix Processes
  218. Appendixes C, D, and E: Paper Sources, Electronic Sources, and Organizations
  219. B. Unix Processes
  220. About Processes
  221. Signals
  222. Controlling and Examining Processes
  223. Starting Up Unix and Logging In
  224. C. Paper Sources
  225. Unix Security References
  226. Other Computer References
  227. D. Electronic Resources
  228. Mailing Lists
  229. Web Sites
  230. Usenet Groups
  231. Software Resources
  232. E. Organizations
  233. Professional Organizations
  234. U.S. Government Organizations
  235. Emergency Response Organizations
  236. Index
  237. Index
  238. Index
  239. Index
  240. Index
  241. Index
  242. Index
  243. Index
  244. Index
  245. Index
  246. Index
  247. Index
  248. Index
  249. Index
  250. Index
  251. Index
  252. Index
  253. Index
  254. Index
  255. Index
  256. Index
  257. Index
  258. Index
  259. Index
  260. Index
  261. Index
  262. Index
  263. About the Authors
  264. Colophon
  265. Copyright

Starting Up Unix and Logging In

Most modern computers are equipped with a certain amount of read-only memory (ROM) that contains the first program that a computer runs when it is turned on.[374] Typically, this ROM system will perform a small number of system diagnostic tests to ensure that the system is operating properly, after which it will load another program from a disk drive or from the network. This process is called bootstrapping.

Although every Unix system bootstraps in a slightly different fashion, the ROM monitor usually loads a small program named boot that is kept at a known location on the hard disk (or on the network). The boot program then loads the Unix kernel into the computer and runs it.

After the kernel initializes itself and determines the machine’s configuration, it creates a process with a PID of 1, which then runs the /etc/init program.

Process #1: /etc/init

The program /etc/init finishes the task of starting up the computer system and lets users log in.

Some Unix systems can be booted in single-user mode . If Unix is booted in single-user mode, the init program forks and runs the standard Unix shell, /bin/sh, on the system console. This shell, run as superuser, gives the person sitting at the console total access to the system. It also allows nobody else access to the system; no network daemons are started unless root chooses to start them.

Some systems can be set up to require a password to boot in single-user mode, while others cannot. Many Unix systems will require a password if the console is not listed as a secure device in the /etc/ttys or /etc/securetty file. Some Sun Microsystems and Macintosh workstations will also accept a password specified using the ROM boot monitor under the Open Firmware standard, rather than reading from the file. This is a useful feature if the /etc/passwd file is deleted—the only way to rebuild it would be to bring the computer up in single-user mode.

Single-user mode is also a security hole because it allows unprivileged people to execute privileged commands simply by typing them on the system console. Computers that can be brought up in single-user mode should have their consoles in a place that is physically secure. This may be a challenge if the system is a workstation, and that is why the ROM password is useful.

Some Unix systems can also be booted in a maintenance mode . Maintenance mode is similar to single-user mode, except that the root password must first be typed on the system console.

Warning

Do not depend on maintenance mode to prevent people from booting your computers in single-user mode. Most computers can be booted from CD-ROMs, floppy disks, or portable hard disks, allowing anyone with even the most modest technical knowledge to gain superuser privileges if they have physical access to the system.

In normal operation, /etc/init then executes the shell script /etc/rc. Depending on which version of Unix you are using, /etc/rc may execute a variety of other shell scripts whose names all begin with /etc/rc (common varieties include /etc/rc.network and /etc/rc.local) or which are located in the directory /etc/init.d or /etc/rc?.d. System V systems additionally use the file /etc/inittab to control what is done at various run levels. The /etc/rc script(s) set up the Unix system as a multiuser system, performing a variety of tasks, including:

  • Removing temporary files from the /tmp and/or /usr/tmp directories

  • Removing any lock files

  • Checking and setting the clock

  • Resetting and initializing and attached devices

  • Starting service daemon programs and “housekeeping” processes

  • Checking filesystem consistency and mounting additional filesystems

  • Turning on accounting and quota checking

  • Setting up the network

When /etc/rc finishes executing, /etc/init forks a new process for every enabled terminal on the system. On older systems, this program is called /etc/getty. On newer systems, including SVR4, it is called /usr/lib/saf/ttymon. On systems that support virtual consoles, such as Linux, a version of getty (often called mingetty) will be run for each virtual console as well.

Logging In

The getty or ttymon program is responsible for configuring the user terminal and displaying the initial prompt. A copy of the program is run for each port that is monitored. Whenever the process dies, init starts another one to take its place. If the init process dies, Unix halts or reboots (depending on the version of Unix installed).

The getty or ttymon program displays the word login: (or a similar prompt) on its assigned terminal and waits for a username to be typed. When it gets a username, getty/ttymon execs the program /bin/login, which asks for a password and validates it against the password stored in /etc/passwd. If the password does not match, the login program asks for a new username/password combination.

Some versions of Unix can be set up to require an additional password if you are trying to log into the computer over a modem. See the reference page for your login program for details.

If you do not log in within a short period of time (usually 60 seconds), or if you make too many incorrect attempts, login exits and init starts up a new getty/ttymon program on the terminal. On some systems equipped with modems, this causes the telephone to hang up. Again, this strategy is designed to deter an unauthorized user from breaking into a Unix system by making the task more difficult: after trying a few passwords, an attacker attempting to break into a Unix system is forced to redial the telephone.

If the username and password match, the login program performs some accounting and initialization tasks, then changes its real and effective UIDs be those of the username that has been supplied. login then execs your shell program. The process number of that shell is the same as the original getty. /etc/init receives a SIGCHLD signal when this process dies; /etc/init then starts a new getty or ttymon.

On Berkeley-derived systems, the file /etc/ttys or /etc/ttytab contains a line for each terminal that will have a getty/ttymon process enabled. It also contains information on terminal type, if known, and an indication of whether the line is “secure.” The root user cannot log into a terminal that is not secure; to become the superuser on one of these lines, you must first log in as yourself, then use the su command. Unless all your terminal lines are in protected areas, turning off “secure” on all lines is a good precaution.

Network logins are typically provided by the telnetd, rshd, or sshd programs. These programs listen for a network connection. (Systems that use the inetd Internet daemon split this functionality; the connection is accepted by inetd and then immediately passed to the telnetd or rshd daemon.) When the connection is accepted, they obtain the username and the password of the user and start the user’s shell.

Running the User’s Shell

As the last part of the login process, the Unix system starts up the user’s shell, as specified in the /etc/passwd file. The shell then reads a series of startup commands from a variety of different files, depending on which shell you are using and which flavor of Unix is running.

If the user’s shell is /bin/sh (the Bourne shell) or /bin/ksh (the Korn shell), the shell will execute all of the commands stored in a special file named .profile in your home directory. (On many systems, /bin/sh and /bin/ksh will also execute the commands stored in the system-wide /etc/profile or /usr/lib/profile files.)

If the user’s shell is /bin/csh (the C shell), Unix will execute all of the commands stored in the .cshrc file in your home directory. The C shell will then execute all of the commands stored in the .login file in the user’s home directory. When the user logs out, the commands in the .logout file will be executed.

Because these files are automatically run when the user logs in, they can present a security problem: if an intruder were to modify the files, the end result would be the same as if the intruder typed commands at your keyboard every time the user logged in! Thus, startup files need to be protected so that an intruder cannot write to the files or replace them with other files. Chapter 6 explains how to protect your files.

Once the shell is running, it takes input, parses it into words and arguments, and performs the fork/exec operations we described earlier. When you type an exit command, or type Ctrl-D to signify the end of input, the shell performs any final cleanup operations and exits. The underlying process terminates, and the init process may then fork a replacement process to listen for user input.



[374] On Intel-based systems, the ROM is frequently referred to as the BIOS, short for Basic Input/Output System.