Table of Contents for
Practical UNIX and Internet Security, 3rd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Practical UNIX and Internet Security, 3rd Edition by Alan Schwartz Published by O'Reilly Media, Inc., 2003
  1. Cover
  2. Practical Unix & Internet Security, 3rd Edition
  3. A Note Regarding Supplemental Files
  4. Preface
  5. Unix “Security”?
  6. Scope of This Book
  7. Which Unix System?
  8. Conventions Used in This Book
  9. Comments and Questions
  10. Acknowledgments
  11. A Note to Would-Be Attackers
  12. I. Computer Security Basics
  13. 1. Introduction: Some Fundamental Questions
  14. What Is Computer Security?
  15. What Is an Operating System?
  16. What Is a Deployment Environment?
  17. Summary
  18. 2. Unix History and Lineage
  19. History of Unix
  20. Security and Unix
  21. Role of This Book
  22. Summary
  23. 3. Policies and Guidelines
  24. Planning Your Security Needs
  25. Risk Assessment
  26. Cost-Benefit Analysis and Best Practices
  27. Policy
  28. Compliance Audits
  29. Outsourcing Options
  30. The Problem with Security Through Obscurity
  31. Summary
  32. II. Security Building Blocks
  33. 4. Users, Passwords, and Authentication
  34. Logging in with Usernames and Passwords
  35. The Care and Feeding of Passwords
  36. How Unix Implements Passwords
  37. Network Account and Authorization Systems
  38. Pluggable Authentication Modules (PAM)
  39. Summary
  40. 5. Users, Groups, and the Superuser
  41. Users and Groups
  42. The Superuser (root)
  43. The su Command: Changing Who You Claim to Be
  44. Restrictions on the Superuser
  45. Summary
  46. 6. Filesystems and Security
  47. Understanding Filesystems
  48. File Attributes and Permissions
  49. chmod: Changing a File’s Permissions
  50. The umask
  51. SUID and SGID
  52. Device Files
  53. Changing a File’s Owner or Group
  54. Summary
  55. 7. Cryptography Basics
  56. Understanding Cryptography
  57. Symmetric Key Algorithms
  58. Public Key Algorithms
  59. Message Digest Functions
  60. Summary
  61. 8. Physical Security for Servers
  62. Planning for the Forgotten Threats
  63. Protecting Computer Hardware
  64. Preventing Theft
  65. Protecting Your Data
  66. Story: A Failed Site Inspection
  67. Summary
  68. 9. Personnel Security
  69. Background Checks
  70. On the Job
  71. Departure
  72. Other People
  73. Summary
  74. III. Network and Internet Security
  75. 10. Modems and Dialup Security
  76. Modems: Theory of Operation
  77. Modems and Security
  78. Modems and Unix
  79. Additional Security for Modems
  80. Summary
  81. 11. TCP/IP Networks
  82. Networking
  83. IP: The Internet Protocol
  84. IP Security
  85. Summary
  86. 12. Securing TCP and UDP Services
  87. Understanding Unix Internet Servers and Services
  88. Controlling Access to Servers
  89. Primary Unix Network Services
  90. Managing Services Securely
  91. Putting It All Together: An Example
  92. Summary
  93. 13. Sun RPC
  94. Remote Procedure Call (RPC)
  95. Secure RPC (AUTH_DES)
  96. Summary
  97. 14. Network-Based Authentication Systems
  98. Sun’s Network Information Service (NIS)
  99. Sun’s NIS+
  100. Kerberos
  101. LDAP
  102. Other Network Authentication Systems
  103. Summary
  104. 15. Network Filesystems
  105. Understanding NFS
  106. Server-Side NFS Security
  107. Client-Side NFS Security
  108. Improving NFS Security
  109. Some Last Comments on NFS
  110. Understanding SMB
  111. Summary
  112. 16. Secure Programming Techniques
  113. One Bug Can Ruin Your Whole Day . . .
  114. Tips on Avoiding Security-Related Bugs
  115. Tips on Writing Network Programs
  116. Tips on Writing SUID/SGID Programs
  117. Using chroot( )
  118. Tips on Using Passwords
  119. Tips on Generating Random Numbers
  120. Summary
  121. IV. Secure Operations
  122. 17. Keeping Up to Date
  123. Software Management Systems
  124. Updating System Software
  125. Summary
  126. 18. Backups
  127. Why Make Backups?
  128. Backing Up System Files
  129. Software for Backups
  130. Summary
  131. 19. Defending Accounts
  132. Dangerous Accounts
  133. Monitoring File Format
  134. Restricting Logins
  135. Managing Dormant Accounts
  136. Protecting the root Account
  137. One-Time Passwords
  138. Administrative Techniques for Conventional Passwords
  139. Intrusion Detection Systems
  140. Summary
  141. 20. Integrity Management
  142. The Need for Integrity
  143. Protecting Integrity
  144. Detecting Changes After the Fact
  145. Integrity-Checking Tools
  146. Summary
  147. 21. Auditing, Logging, and Forensics
  148. Unix Log File Utilities
  149. Process Accounting: The acct/pacct File
  150. Program-Specific Log Files
  151. Designing a Site-Wide Log Policy
  152. Handwritten Logs
  153. Managing Log Files
  154. Unix Forensics
  155. Summary
  156. V. Handling Security Incidents
  157. 22. Discovering a Break-in
  158. Prelude
  159. Discovering an Intruder
  160. Cleaning Up After the Intruder
  161. Case Studies
  162. Summary
  163. 23. Protecting Against Programmed Threats
  164. Programmed Threats: Definitions
  165. Damage
  166. Authors
  167. Entry
  168. Protecting Yourself
  169. Preventing Attacks
  170. Summary
  171. 24. Denial of Service Attacks and Solutions
  172. Types of Attacks
  173. Destructive Attacks
  174. Overload Attacks
  175. Network Denial of Service Attacks
  176. Summary
  177. 25. Computer Crime
  178. Your Legal Options After a Break-in
  179. Criminal Hazards
  180. Criminal Subject Matter
  181. Summary
  182. 26. Who Do You Trust?
  183. Can You Trust Your Computer?
  184. Can You Trust Your Suppliers?
  185. Can You Trust People?
  186. Summary
  187. VI. Appendixes
  188. A. Unix Security Checklist
  189. Preface
  190. Chapter 1: Introduction: Some Fundamental Questions
  191. Chapter 2: Unix History and Lineage
  192. Chapter 3: Policies and Guidelines
  193. Chapter 4: Users, Passwords, and Authentication
  194. Chapter 5: Users, Groups, and the Superuser
  195. Chapter 6: Filesystems and Security
  196. Chapter 7: Cryptography Basics
  197. Chapter 8: Physical Security for Servers
  198. Chapter 9: Personnel Security
  199. Chapter 10: Modems and Dialup Security
  200. Chapter 11: TCP/IP Networks
  201. Chapter 12: Securing TCP and UDP Services
  202. Chapter 13: Sun RPC
  203. Chapter 14: Network-Based Authentication Systems
  204. Chapter 15: Network Filesystems
  205. Chapter 16: Secure Programming Techniques
  206. Chapter 17: Keeping Up to Date
  207. Chapter 18: Backups
  208. Chapter 19: Defending Accounts
  209. Chapter 20: Integrity Management
  210. Chapter 21: Auditing, Logging, and Forensics
  211. Chapter 22: Discovering a Break-In
  212. Chapter 23: Protecting Against Programmed Threats
  213. Chapter 24: Denial of Service Attacks and Solutions
  214. Chapter 25: Computer Crime
  215. Chapter 26: Who Do You Trust?
  216. Appendix A: Unix Security Checklist
  217. Appendix B: Unix Processes
  218. Appendixes C, D, and E: Paper Sources, Electronic Sources, and Organizations
  219. B. Unix Processes
  220. About Processes
  221. Signals
  222. Controlling and Examining Processes
  223. Starting Up Unix and Logging In
  224. C. Paper Sources
  225. Unix Security References
  226. Other Computer References
  227. D. Electronic Resources
  228. Mailing Lists
  229. Web Sites
  230. Usenet Groups
  231. Software Resources
  232. E. Organizations
  233. Professional Organizations
  234. U.S. Government Organizations
  235. Emergency Response Organizations
  236. Index
  237. Index
  238. Index
  239. Index
  240. Index
  241. Index
  242. Index
  243. Index
  244. Index
  245. Index
  246. Index
  247. Index
  248. Index
  249. Index
  250. Index
  251. Index
  252. Index
  253. Index
  254. Index
  255. Index
  256. Index
  257. Index
  258. Index
  259. Index
  260. Index
  261. Index
  262. Index
  263. About the Authors
  264. Colophon
  265. Copyright

Designing a Site-Wide Log Policy

This section provides suggestions for designing a comprehensive log policy for use at your own site.

Where to Log

Because the syslog facility provides many different logging options, this gives individual sites flexibility in setting up their own logging. Different kinds of messages can be handled in different ways. For example, most users won’t want to be bothered with most log messages. On the other hand, auth.crit messages should be displayed on the system administrator’s screen (in addition to being recorded in a file). This section describes a few different approaches.

Logging to a printer

If you have a printer you wish to devote to system logging, you can connect it to a terminal port and specify that port name in the /etc/syslog.conf file.

For example, you might connect a special-purpose printer to the port /dev/ttya. You can then log all messages from the authorization system (such as invalid passwords) by inserting the following line in your syslog.conf file:

auth.*                 /dev/ttya

A printer connected in such a way should only be used for logging. We suggest using progressive display printers (e.g., dot-matrix printers), if possible, rather than laser printers, because progressive display printers allow you to view the log line by line as it is written, rather than waiting until an entire page is completed.

Logging to a hardcopy device is a very good idea if you think that your system is being visited by unwelcome intruders on a regular basis. The intruders can erase log files, but after something is sent to a printer, they cannot touch the printer output without physically breaking into your establishment.[320]

Tip

Be sure that you do not log solely to a hardcopy device. Otherwise, you will lose valuable information if the printer jams or runs out of paper, the ribbon breaks, or somebody steals the paper printout.

Logging across the network

If you have several machines connected by a TCP/IP network, you may wish to have events from all of the machines logged on one (or more) log machines. If this machine is secure, the result will be a log file that can’t be altered, even if the security on the other machines is compromised. To send all of the messages from one computer to another computer, simply insert this line in the first computer’s syslog.conf file:

*.*               @loghost

This feature can cause a lot of network traffic. Instead, you should limit your log to only “important” messages. For example, this log file would simply send the hardware- and security-related messages to the remote logging hosts, but keep some copies on the local host for debugging purposes:

*.err;kern.debug;auth.notice /dev/console
daemon,auth.notice           /var/adm/messages
lpr.*                        @loghost1,@loghost2
auth.*                       @loghost1,@loghost2
*.emerg                      @loghost1,@loghost2
*.alert                      @loghost1,@loghost2
mark.*                       /dev/console

Logging to another host adds to your overall system security: even if people break into one computer and erase its log files, they will still have to deal with the log messages sent across the network to the other system. If you do log to a remote host, you might wish to restrict user accounts on that machine. However, be careful: if you only log over the network to a single host, then that one host is a single point of failure. The previous example logs to both loghost1 and loghost2.

Another alternative is to use a non-Unix machine as the log host. The syslog code can be compiled on other machines with standard C and TCP/IP libraries. Thus, you can log to a DOS[321] or Macintosh machine under OS 8 or 9, and further protect your logs. After all, if syslog is the only network service running on those systems, there is no way for someone to break in from the Net to alter the logs!

Logging everything everywhere

Disks are cheap these days. Sites with sufficient resources and adequately trained personnel sometimes choose to log everything that might possibly be useful, and log it in many different places. In addition to individual log files for different types of messages, many system administrators configure syslog to log all messages at all levels to a single file, which provides a chronological account of all logged events. Workstations on networks can create their own log files of syslog events, and also send all logging messages to several different logging hosts—possibly on different networks.

The advantage of logging in multiple places is that it makes an attacker’s attempts at erasing any evidence of his presence much more difficult. It also allows you to validate log entries if you need to use them as evidence. If several devices record the same event, the log entry is more trustworthy. On the other hand, multiple log files will not do you any good if they are never examined. Furthermore, if they are never pruned, they may grow so large that they will negatively impact your operations.

Tables Table 21-5 and Table 21-6 summarize some typical messages available on various versions of Unix. Other critical conditions might include messages about full filesystems, device failures, or network problems.

Table 21-5. Typical critical messages

Program

Message

Meaning

halt

halted by <user>

<user> used the /etc/halt command to shut down the system.

login

ROOT LOGIN REFUSED ON <tty> [FROM <hostname>]

root tried to log onto a terminal that is not secure.

login

REPEATED LOGIN FAILURES ON <tty> [FROM <hostname>] <user>

Somebody tried to log in as <user> and supplied a bad password more than five times.

reboot

rebooted by <user>

<user> rebooted the system with the /etc/reboot command.

su

BAD SU <user> on <tty>

Somebody tried to su to the superuser and did not supply the correct password.

shutdown

reboot, halt, or shutdown by <user> on <tty>

<user> used the /etc/shutdown command to reboot, halt, or shut down the system.

Table 21-6. Typical information messages

Program

Message

Meaning

date

date set by <user>

<user> changed the system date.

login

ROOT LOGIN <tty> [FROM <hostname>]

root logged in.

su

<user> on <tty>

<user> used the su command to become the superuser.

getty

<tty>

/bin/getty was unable to open <tty>.

Tip

For security reasons, some information should never be logged. For example, although you should log failed password attempts, you should not log the password that was used in the failed attempt. Users frequently mistype their own passwords, and logging these mistyped passwords would help an attacker break into a user’s account. Some system administrators believe that the account name should also not be logged on failed login attempts—especially when the account typed by the user is nonexistent. The reason is that users occasionally type their passwords when they are prompted for their usernames. If invalid accounts are logged, then it might be possible for an attacker to use those logs to infer people’s passwords. This is one reason why auth facility messages are sometimes logged to a special log file that is readable only by root.



[320] Although if they have superuser access, they can temporarily stop logging or change what is logged.

[321] Windows has too many extra services and security concerns. If all you are doing is listening and logging, DOS is quite enough.