Table of Contents for
Practical UNIX and Internet Security, 3rd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Practical UNIX and Internet Security, 3rd Edition by Alan Schwartz Published by O'Reilly Media, Inc., 2003
  1. Cover
  2. Practical Unix & Internet Security, 3rd Edition
  3. A Note Regarding Supplemental Files
  4. Preface
  5. Unix “Security”?
  6. Scope of This Book
  7. Which Unix System?
  8. Conventions Used in This Book
  9. Comments and Questions
  10. Acknowledgments
  11. A Note to Would-Be Attackers
  12. I. Computer Security Basics
  13. 1. Introduction: Some Fundamental Questions
  14. What Is Computer Security?
  15. What Is an Operating System?
  16. What Is a Deployment Environment?
  17. Summary
  18. 2. Unix History and Lineage
  19. History of Unix
  20. Security and Unix
  21. Role of This Book
  22. Summary
  23. 3. Policies and Guidelines
  24. Planning Your Security Needs
  25. Risk Assessment
  26. Cost-Benefit Analysis and Best Practices
  27. Policy
  28. Compliance Audits
  29. Outsourcing Options
  30. The Problem with Security Through Obscurity
  31. Summary
  32. II. Security Building Blocks
  33. 4. Users, Passwords, and Authentication
  34. Logging in with Usernames and Passwords
  35. The Care and Feeding of Passwords
  36. How Unix Implements Passwords
  37. Network Account and Authorization Systems
  38. Pluggable Authentication Modules (PAM)
  39. Summary
  40. 5. Users, Groups, and the Superuser
  41. Users and Groups
  42. The Superuser (root)
  43. The su Command: Changing Who You Claim to Be
  44. Restrictions on the Superuser
  45. Summary
  46. 6. Filesystems and Security
  47. Understanding Filesystems
  48. File Attributes and Permissions
  49. chmod: Changing a File’s Permissions
  50. The umask
  51. SUID and SGID
  52. Device Files
  53. Changing a File’s Owner or Group
  54. Summary
  55. 7. Cryptography Basics
  56. Understanding Cryptography
  57. Symmetric Key Algorithms
  58. Public Key Algorithms
  59. Message Digest Functions
  60. Summary
  61. 8. Physical Security for Servers
  62. Planning for the Forgotten Threats
  63. Protecting Computer Hardware
  64. Preventing Theft
  65. Protecting Your Data
  66. Story: A Failed Site Inspection
  67. Summary
  68. 9. Personnel Security
  69. Background Checks
  70. On the Job
  71. Departure
  72. Other People
  73. Summary
  74. III. Network and Internet Security
  75. 10. Modems and Dialup Security
  76. Modems: Theory of Operation
  77. Modems and Security
  78. Modems and Unix
  79. Additional Security for Modems
  80. Summary
  81. 11. TCP/IP Networks
  82. Networking
  83. IP: The Internet Protocol
  84. IP Security
  85. Summary
  86. 12. Securing TCP and UDP Services
  87. Understanding Unix Internet Servers and Services
  88. Controlling Access to Servers
  89. Primary Unix Network Services
  90. Managing Services Securely
  91. Putting It All Together: An Example
  92. Summary
  93. 13. Sun RPC
  94. Remote Procedure Call (RPC)
  95. Secure RPC (AUTH_DES)
  96. Summary
  97. 14. Network-Based Authentication Systems
  98. Sun’s Network Information Service (NIS)
  99. Sun’s NIS+
  100. Kerberos
  101. LDAP
  102. Other Network Authentication Systems
  103. Summary
  104. 15. Network Filesystems
  105. Understanding NFS
  106. Server-Side NFS Security
  107. Client-Side NFS Security
  108. Improving NFS Security
  109. Some Last Comments on NFS
  110. Understanding SMB
  111. Summary
  112. 16. Secure Programming Techniques
  113. One Bug Can Ruin Your Whole Day . . .
  114. Tips on Avoiding Security-Related Bugs
  115. Tips on Writing Network Programs
  116. Tips on Writing SUID/SGID Programs
  117. Using chroot( )
  118. Tips on Using Passwords
  119. Tips on Generating Random Numbers
  120. Summary
  121. IV. Secure Operations
  122. 17. Keeping Up to Date
  123. Software Management Systems
  124. Updating System Software
  125. Summary
  126. 18. Backups
  127. Why Make Backups?
  128. Backing Up System Files
  129. Software for Backups
  130. Summary
  131. 19. Defending Accounts
  132. Dangerous Accounts
  133. Monitoring File Format
  134. Restricting Logins
  135. Managing Dormant Accounts
  136. Protecting the root Account
  137. One-Time Passwords
  138. Administrative Techniques for Conventional Passwords
  139. Intrusion Detection Systems
  140. Summary
  141. 20. Integrity Management
  142. The Need for Integrity
  143. Protecting Integrity
  144. Detecting Changes After the Fact
  145. Integrity-Checking Tools
  146. Summary
  147. 21. Auditing, Logging, and Forensics
  148. Unix Log File Utilities
  149. Process Accounting: The acct/pacct File
  150. Program-Specific Log Files
  151. Designing a Site-Wide Log Policy
  152. Handwritten Logs
  153. Managing Log Files
  154. Unix Forensics
  155. Summary
  156. V. Handling Security Incidents
  157. 22. Discovering a Break-in
  158. Prelude
  159. Discovering an Intruder
  160. Cleaning Up After the Intruder
  161. Case Studies
  162. Summary
  163. 23. Protecting Against Programmed Threats
  164. Programmed Threats: Definitions
  165. Damage
  166. Authors
  167. Entry
  168. Protecting Yourself
  169. Preventing Attacks
  170. Summary
  171. 24. Denial of Service Attacks and Solutions
  172. Types of Attacks
  173. Destructive Attacks
  174. Overload Attacks
  175. Network Denial of Service Attacks
  176. Summary
  177. 25. Computer Crime
  178. Your Legal Options After a Break-in
  179. Criminal Hazards
  180. Criminal Subject Matter
  181. Summary
  182. 26. Who Do You Trust?
  183. Can You Trust Your Computer?
  184. Can You Trust Your Suppliers?
  185. Can You Trust People?
  186. Summary
  187. VI. Appendixes
  188. A. Unix Security Checklist
  189. Preface
  190. Chapter 1: Introduction: Some Fundamental Questions
  191. Chapter 2: Unix History and Lineage
  192. Chapter 3: Policies and Guidelines
  193. Chapter 4: Users, Passwords, and Authentication
  194. Chapter 5: Users, Groups, and the Superuser
  195. Chapter 6: Filesystems and Security
  196. Chapter 7: Cryptography Basics
  197. Chapter 8: Physical Security for Servers
  198. Chapter 9: Personnel Security
  199. Chapter 10: Modems and Dialup Security
  200. Chapter 11: TCP/IP Networks
  201. Chapter 12: Securing TCP and UDP Services
  202. Chapter 13: Sun RPC
  203. Chapter 14: Network-Based Authentication Systems
  204. Chapter 15: Network Filesystems
  205. Chapter 16: Secure Programming Techniques
  206. Chapter 17: Keeping Up to Date
  207. Chapter 18: Backups
  208. Chapter 19: Defending Accounts
  209. Chapter 20: Integrity Management
  210. Chapter 21: Auditing, Logging, and Forensics
  211. Chapter 22: Discovering a Break-In
  212. Chapter 23: Protecting Against Programmed Threats
  213. Chapter 24: Denial of Service Attacks and Solutions
  214. Chapter 25: Computer Crime
  215. Chapter 26: Who Do You Trust?
  216. Appendix A: Unix Security Checklist
  217. Appendix B: Unix Processes
  218. Appendixes C, D, and E: Paper Sources, Electronic Sources, and Organizations
  219. B. Unix Processes
  220. About Processes
  221. Signals
  222. Controlling and Examining Processes
  223. Starting Up Unix and Logging In
  224. C. Paper Sources
  225. Unix Security References
  226. Other Computer References
  227. D. Electronic Resources
  228. Mailing Lists
  229. Web Sites
  230. Usenet Groups
  231. Software Resources
  232. E. Organizations
  233. Professional Organizations
  234. U.S. Government Organizations
  235. Emergency Response Organizations
  236. Index
  237. Index
  238. Index
  239. Index
  240. Index
  241. Index
  242. Index
  243. Index
  244. Index
  245. Index
  246. Index
  247. Index
  248. Index
  249. Index
  250. Index
  251. Index
  252. Index
  253. Index
  254. Index
  255. Index
  256. Index
  257. Index
  258. Index
  259. Index
  260. Index
  261. Index
  262. Index
  263. About the Authors
  264. Colophon
  265. Copyright

The Superuser (root)

Almost every Unix system comes with a special user in the /etc/passwd file with a UID of 0. This user is known as the superuser and is normally given the username root. The password for the root account is usually called simply the "root password.”

The root account is the identity used by the operating system itself to accomplish its basic functions, such as logging users in and out of the system, recording accounting information, and managing input/output devices. For this reason, the superuser exerts nearly complete control over the operating system: nearly all security restrictions are bypassed for any program that is run by the root user, and most of the checks and warnings are turned off.[54]

What the Superuser Can Do

Any process that has an effective UID of 0 (see Section 5.3.1 later in this chapter) runs as the superuser—that is, any process with a UID of 0 runs without security checks and is allowed to do almost anything. Normal security checks and constraints are ignored for the superuser, although most systems do audit and log some of the superuser’s actions.

Some of the things that the superuser can do include:

Process control
  • Change the nice value of any process (see Section B.1.3.3).

  • Send any signal to any process (see Signals).

  • Alter “hard limits” for maximum CPU time as well as maximum file, data segment, stack segment, and core file sizes (see Chapter 23).

  • Turn accounting and auditing on and off (see Chapter 21).

  • Bypass login restrictions prior to shutdown. (Note that this may not be possible if you have configured your system so that the superuser cannot log into terminals.)

  • Change his process UID to that of any other user on the system.

  • Log out all users and prevent new logins.

Device control
  • Access any working device.

  • Shut down or reboot the computer.

  • Set the date and time.

  • Read or modify any memory location.

  • Create new devices (anywhere in the filesystem) with the mknod command.

Network control
  • Run network services on “trusted” ports (see Chapter 17).

  • Reconfigure the network.

  • Put the network interface into “promiscuous mode” and examine all packets on the network (possible only with certain kinds of networks and network interfaces).

Filesystem control
  • Read, modify, or delete any file or program on the system (see Chapter 6).

  • Run any program.[55]

  • Change a disk’s electronic label.[56]

  • Mount and unmount filesystems.

  • Add, remove, or change user accounts.

  • Enable or disable quotas and accounting.

  • Use the chroot( ) system call, which changes a process’s view of the filesystem root directory.

  • Write to the disk after it is “100 percent” full. The Berkeley Fast Filesystem and the Linux ext2 File System both allow the reservation of some minfree amount of the disk. Normally, a report that a disk is 100% full implies that there is still 10% left. Although this space can be used by the superuser, it shouldn’t be: filesystems run faster when their disks are not completely filled.

What the Superuser Can’t Do

Despite all of the powers listed in the previous section, there are some things that the superuser can’t do, including:

  • Make a change to a filesystem that is mounted read-only. (However, the superuser can make changes directly to the raw device, or can unmount a read-only filesystem and remount it read/write, provided that the media is not physically write-protected.)

  • Unmount a filesystem that contains open files, or one in which some running process has set its current directory.[57]

  • Write directly to a directory, or create a hard link to a directory (although these operations are allowed on some Unix systems).

  • Decrypt the passwords stored in the shadow password file, although the superuser can modify the /bin/login and su system programs to record passwords when they are typed. The superuser can also use the passwd command to change the password of any account.

  • Terminate a process that has entered a wait state inside the kernel, although the superuser can shut down the computer, effectively killing all processes.

Any Username Can Be a Superuser

As we noted in Section 5.1, any account that has a UID of 0 has superuser privileges. The username root is merely a convention. Thus, in the following sample /etc/passwd file, both root and beth can execute commands without any security checks:

root:x:0:1:Operator:/:/bin/ksh
beth:x:0:101:Beth Cousineau:/u/beth:/bin/csh
rachel:x:181:181:Rachel Cohen:/u/rachel:/bin/ksh

You should immediately be suspicious of accounts on your system that have a UID of 0 that you did not install; accounts such as these are frequently added by people who break into computers so that they will have a simple way of obtaining superuser access in the future.

The Problem with the Superuser

The superuser is the main security weakness in the Unix operating system. Because the superuser can do anything, after a person gains superuser privileges—for example, by learning the root password and logging in as root—that person can do virtually anything to the system. This explains why most attackers who break into Unix systems try to become the superuser.

Most Unix security holes that have been discovered are of the kind that allow regular users to obtain superuser privileges. Thus, most Unix security holes result in a catastrophic bypass of the operating system’s security mechanisms. After a flaw is discovered and exploited, the entire computer is compromised.

There are a number of techniques for minimizing the impact of such system compromises, including:

  • Storing sensitive files on removable media, and mounting the media only when you need to access the files. An attacker who gains superuser privileges while the media are unmounted will not have access to critical files.

  • Encrypting your files. Being the superuser grants privileges only on the Unix system; it does not magically grant the mathematical prowess necessary to decrypt a well-coded file or the necessary clairvoyance to divine encryption keys. (Encryption is discussed in Chapter 7.) Best practice is to encrypt with a passphrase other than your login password, which an attacker might capture.

  • Mounting disks read-only when possible.

  • Taking advantage of filesystem features like immutable and append-only files if your system supports them.

  • Keeping your backups of the system current. This practice is discussed further in Chapter 16.

There are many other defenses, too, and we’ll continue to present them in this chapter and throughout this book.



[54] On a few systems, it’s possible to restrict root’s capabilities as part of the kernel boot process, so that even if the superuser account is compromised, some kinds of damage are not possible unless the attacker is physically at the console and has an additional password. Systems that use MAC often do not have a superuser at all, so the discussion in this section does not apply to such systems.

[55] If a program has a file mode of 000, root must set the execute bit of the program with the chmod( ) system call before the program can be run, although shell scripts can be run by feeding their input directly into /bin/sh.

[56] Usually stored on the first 16 blocks of a hard disk or floppy disk formatted with the Unix filesystem.

[57] Many BSD variants (including NetBSD and FreeBSD) provide an -f option to umount, which forcibly unmounts a busy filesystem.