Table of Contents for
Practical UNIX and Internet Security, 3rd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Practical UNIX and Internet Security, 3rd Edition by Alan Schwartz Published by O'Reilly Media, Inc., 2003
  1. Cover
  2. Practical Unix & Internet Security, 3rd Edition
  3. A Note Regarding Supplemental Files
  4. Preface
  5. Unix “Security”?
  6. Scope of This Book
  7. Which Unix System?
  8. Conventions Used in This Book
  9. Comments and Questions
  10. Acknowledgments
  11. A Note to Would-Be Attackers
  12. I. Computer Security Basics
  13. 1. Introduction: Some Fundamental Questions
  14. What Is Computer Security?
  15. What Is an Operating System?
  16. What Is a Deployment Environment?
  17. Summary
  18. 2. Unix History and Lineage
  19. History of Unix
  20. Security and Unix
  21. Role of This Book
  22. Summary
  23. 3. Policies and Guidelines
  24. Planning Your Security Needs
  25. Risk Assessment
  26. Cost-Benefit Analysis and Best Practices
  27. Policy
  28. Compliance Audits
  29. Outsourcing Options
  30. The Problem with Security Through Obscurity
  31. Summary
  32. II. Security Building Blocks
  33. 4. Users, Passwords, and Authentication
  34. Logging in with Usernames and Passwords
  35. The Care and Feeding of Passwords
  36. How Unix Implements Passwords
  37. Network Account and Authorization Systems
  38. Pluggable Authentication Modules (PAM)
  39. Summary
  40. 5. Users, Groups, and the Superuser
  41. Users and Groups
  42. The Superuser (root)
  43. The su Command: Changing Who You Claim to Be
  44. Restrictions on the Superuser
  45. Summary
  46. 6. Filesystems and Security
  47. Understanding Filesystems
  48. File Attributes and Permissions
  49. chmod: Changing a File’s Permissions
  50. The umask
  51. SUID and SGID
  52. Device Files
  53. Changing a File’s Owner or Group
  54. Summary
  55. 7. Cryptography Basics
  56. Understanding Cryptography
  57. Symmetric Key Algorithms
  58. Public Key Algorithms
  59. Message Digest Functions
  60. Summary
  61. 8. Physical Security for Servers
  62. Planning for the Forgotten Threats
  63. Protecting Computer Hardware
  64. Preventing Theft
  65. Protecting Your Data
  66. Story: A Failed Site Inspection
  67. Summary
  68. 9. Personnel Security
  69. Background Checks
  70. On the Job
  71. Departure
  72. Other People
  73. Summary
  74. III. Network and Internet Security
  75. 10. Modems and Dialup Security
  76. Modems: Theory of Operation
  77. Modems and Security
  78. Modems and Unix
  79. Additional Security for Modems
  80. Summary
  81. 11. TCP/IP Networks
  82. Networking
  83. IP: The Internet Protocol
  84. IP Security
  85. Summary
  86. 12. Securing TCP and UDP Services
  87. Understanding Unix Internet Servers and Services
  88. Controlling Access to Servers
  89. Primary Unix Network Services
  90. Managing Services Securely
  91. Putting It All Together: An Example
  92. Summary
  93. 13. Sun RPC
  94. Remote Procedure Call (RPC)
  95. Secure RPC (AUTH_DES)
  96. Summary
  97. 14. Network-Based Authentication Systems
  98. Sun’s Network Information Service (NIS)
  99. Sun’s NIS+
  100. Kerberos
  101. LDAP
  102. Other Network Authentication Systems
  103. Summary
  104. 15. Network Filesystems
  105. Understanding NFS
  106. Server-Side NFS Security
  107. Client-Side NFS Security
  108. Improving NFS Security
  109. Some Last Comments on NFS
  110. Understanding SMB
  111. Summary
  112. 16. Secure Programming Techniques
  113. One Bug Can Ruin Your Whole Day . . .
  114. Tips on Avoiding Security-Related Bugs
  115. Tips on Writing Network Programs
  116. Tips on Writing SUID/SGID Programs
  117. Using chroot( )
  118. Tips on Using Passwords
  119. Tips on Generating Random Numbers
  120. Summary
  121. IV. Secure Operations
  122. 17. Keeping Up to Date
  123. Software Management Systems
  124. Updating System Software
  125. Summary
  126. 18. Backups
  127. Why Make Backups?
  128. Backing Up System Files
  129. Software for Backups
  130. Summary
  131. 19. Defending Accounts
  132. Dangerous Accounts
  133. Monitoring File Format
  134. Restricting Logins
  135. Managing Dormant Accounts
  136. Protecting the root Account
  137. One-Time Passwords
  138. Administrative Techniques for Conventional Passwords
  139. Intrusion Detection Systems
  140. Summary
  141. 20. Integrity Management
  142. The Need for Integrity
  143. Protecting Integrity
  144. Detecting Changes After the Fact
  145. Integrity-Checking Tools
  146. Summary
  147. 21. Auditing, Logging, and Forensics
  148. Unix Log File Utilities
  149. Process Accounting: The acct/pacct File
  150. Program-Specific Log Files
  151. Designing a Site-Wide Log Policy
  152. Handwritten Logs
  153. Managing Log Files
  154. Unix Forensics
  155. Summary
  156. V. Handling Security Incidents
  157. 22. Discovering a Break-in
  158. Prelude
  159. Discovering an Intruder
  160. Cleaning Up After the Intruder
  161. Case Studies
  162. Summary
  163. 23. Protecting Against Programmed Threats
  164. Programmed Threats: Definitions
  165. Damage
  166. Authors
  167. Entry
  168. Protecting Yourself
  169. Preventing Attacks
  170. Summary
  171. 24. Denial of Service Attacks and Solutions
  172. Types of Attacks
  173. Destructive Attacks
  174. Overload Attacks
  175. Network Denial of Service Attacks
  176. Summary
  177. 25. Computer Crime
  178. Your Legal Options After a Break-in
  179. Criminal Hazards
  180. Criminal Subject Matter
  181. Summary
  182. 26. Who Do You Trust?
  183. Can You Trust Your Computer?
  184. Can You Trust Your Suppliers?
  185. Can You Trust People?
  186. Summary
  187. VI. Appendixes
  188. A. Unix Security Checklist
  189. Preface
  190. Chapter 1: Introduction: Some Fundamental Questions
  191. Chapter 2: Unix History and Lineage
  192. Chapter 3: Policies and Guidelines
  193. Chapter 4: Users, Passwords, and Authentication
  194. Chapter 5: Users, Groups, and the Superuser
  195. Chapter 6: Filesystems and Security
  196. Chapter 7: Cryptography Basics
  197. Chapter 8: Physical Security for Servers
  198. Chapter 9: Personnel Security
  199. Chapter 10: Modems and Dialup Security
  200. Chapter 11: TCP/IP Networks
  201. Chapter 12: Securing TCP and UDP Services
  202. Chapter 13: Sun RPC
  203. Chapter 14: Network-Based Authentication Systems
  204. Chapter 15: Network Filesystems
  205. Chapter 16: Secure Programming Techniques
  206. Chapter 17: Keeping Up to Date
  207. Chapter 18: Backups
  208. Chapter 19: Defending Accounts
  209. Chapter 20: Integrity Management
  210. Chapter 21: Auditing, Logging, and Forensics
  211. Chapter 22: Discovering a Break-In
  212. Chapter 23: Protecting Against Programmed Threats
  213. Chapter 24: Denial of Service Attacks and Solutions
  214. Chapter 25: Computer Crime
  215. Chapter 26: Who Do You Trust?
  216. Appendix A: Unix Security Checklist
  217. Appendix B: Unix Processes
  218. Appendixes C, D, and E: Paper Sources, Electronic Sources, and Organizations
  219. B. Unix Processes
  220. About Processes
  221. Signals
  222. Controlling and Examining Processes
  223. Starting Up Unix and Logging In
  224. C. Paper Sources
  225. Unix Security References
  226. Other Computer References
  227. D. Electronic Resources
  228. Mailing Lists
  229. Web Sites
  230. Usenet Groups
  231. Software Resources
  232. E. Organizations
  233. Professional Organizations
  234. U.S. Government Organizations
  235. Emergency Response Organizations
  236. Index
  237. Index
  238. Index
  239. Index
  240. Index
  241. Index
  242. Index
  243. Index
  244. Index
  245. Index
  246. Index
  247. Index
  248. Index
  249. Index
  250. Index
  251. Index
  252. Index
  253. Index
  254. Index
  255. Index
  256. Index
  257. Index
  258. Index
  259. Index
  260. Index
  261. Index
  262. Index
  263. About the Authors
  264. Colophon
  265. Copyright

Public Key Algorithms

The existence of public key cryptography was first postulated in print in the fall of 1975 by Whitfield Diffie and Martin Hellman. The two researchers, then at Stanford University, wrote a paper in which they presupposed the existence of an encryption technique in which information encrypted with one key (the public key) could be decrypted by a second, apparently unrelated key (the private key). Robert Merkle, then a graduate student at Berkeley, had similar ideas at the same time, but because of the vagaries of the academic publication process, Merkle’s papers were not published until the underlying principles and mathematics of the Diffie-Hellman algorithm were widely known.

Since that time, a variety of public key encryption systems have been developed. Unfortunately, there have been significantly fewer developments in public key algorithms than in symmetric key algorithms. The reason has to do with how these algorithms are created. Good symmetric key algorithms simply scramble their input depending on the input key; developing a new symmetric key algorithm requires coming up with new ways for performing that scrambling reliably. Public key algorithms tend to be based on number theory. Developing new public key algorithms requires identifying new mathematical equations with particular properties.

The following list summarizes the public key systems in common use today:

Diffie-Hellman key exchange

A system for exchanging cryptographic keys between active parties. Diffie-Hellman is not actually a method of encryption and decryption, but a method of developing and exchanging a shared private key over a public communications channel. In effect, the two parties agree to some common numerical values, and then each party creates a key. Mathematical transformations of the keys are exchanged. Each party can then calculate a third session key that cannot easily be derived by an attacker who knows both exchanged values.

DSA/DSS

The Digital Signature Standard (DSS) was developed by the U.S. National Security Agency and adopted as a Federal Information Processing Standard (FIPS) by the National Institute for Standards and Technology. DSS is based on the Digital Signature Algorithm (DSA). Although DSA allows keys of any length, only keys between 512 and 1,024 bits are permitted under the DSS FIPS. As specified, DSS can be used only for digital signatures, although it is possible to use some DSA implementations for encryption as well.

RSA

RSA is a well-known public key cryptography system developed in 1977 by three professors at MIT: Ronald Rivest, Adi Shamir, and Leonard Adleman. RSA can be used both for encrypting information and as the basis of a digital signature system. Digital signatures can be used to prove the authorship and authenticity of digital information. The key can be any length, depending on the particular implementation used.

Elliptic curves

Public key systems have traditionally been based on factoring (RSA), discrete logarithms (Diffie-Helman), and the knapsack problem. Elliptic curve cryptosystems are public key encryption systems that are based on an elliptic curve rather than on a traditional logarithmic function; that is, they are based on solutions to the equation y2 = x3 + ax + b. The advantage to using elliptic curve systems stems from the fact that there are no known subexponential algorithms for computing discrete logarithms of elliptic curves. Thus, short keys in elliptic curve cryptosystems can offer a high degree of privacy and security, while remaining easily calculatable. Elliptic curves can be computed very efficiently in hardware. Certicom (http://www.certicom.com) has attempted to commercialize implementations of elliptic curve cryptosystems for use in mobile computing.

Uses for Public Key Encryption

Two of the most common uses for public key cryptography are encrypted messaging and digital signatures :

  • With encrypted messaging, a person who wishes to send an encrypted message to a particular recipient encrypts that message with the individual’s public key. The message can then be decrypted only by the authorized recipient.

  • With digital signatures, the sender of the message uses the public key algorithm and a private key to digitally sign a message. Anyone who receives the message can then validate the authenticity of the message by verifying the signature with the sender’s public key.

In the following two sections we’ll show examples of each.

Encrypted messaging

Encrypted messaging is a general term that is used to describe the sending and receiving of encrypted email and instant messages. In general, these systems use a public key to transform a message into an encrypted message. This message can be decrypted only by someone (or something) that has the public key’s corresponding private key.

For example, here is a message:

this is a test message

and here is a small PGP public key:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: PGP 6.5.8

mQGiBDqX9jwRBADakcIMfMhgvHCge0JOXWqv7Lo8CtbqNpkvpRc98Z7dqjkhhcqC
4xol6rAv4zoZipMtCKOvR2jA0uqQI05GGSnDd0FXeIXH7tW9oquljjwlRBUqWbTb
zAcZC0qyNCdStiKTOSZCFzdDGVHiomSYQ7Om0QP77ipjFnNwyQk5hmTBhQCg/1JE
sSl504X8tSf9vTglF5Tvpy0D/1HtVqrrebkK7zPG2AKDoIO0dgtGv0PeJSJ76EWB
FHMKFm6h0BQjq4NSHUsxuCy0/mpLa31Hm57FHAY/4IbQ1RkFNdDAnpqXe0HWcAT2
0y10L/dMSy20FOvlx/WUKEgz869CaxPBlq14C1R68P+eMp5t8FG8mPXMFyAyMBcA
rTLBA/9p6xZA0rxLha0aPbQpNFSb78J89bs3Wb8dDzJONkUB2dpGUPy7YfAHoZR1
8G0kGk5+8CuhQ8xb0t5jr11/aCjSs2kzrORYpYiDJXprSTvVUHhLjqttXoBCMlsj
TlUNXvc5w+0NVD6Dq6HMN0HQldDcvGjeCCGBvF5kfYsyJEQGkrQbTXIuIFRlc3Qg
S2V5IDx0ZXN0QGtleS5jb20+iQBOBBARAgAOBQI6l/Y8BAsDAgECGQEACgkQGQai
QpjjHCxWlACbBw1H9gYMIuu6FZyXC+n8GcbiOzUAnjuE/UeTtKTWa+1U+cU6xRRR
2YxMuQENBDqX9j0QBADvKZeABrS2KagG6cDOmiUWiG4Y7VIq4CjsC9cdeQtbZ+FV
0oxAb9vz1pSmqdf8/RcvS5Tr5Wby+oBxlXRy33R72FO3J4wT0dfstzdnMEA87p/n
kIla4Quo4j5XoWCycMWAZ1w5/SHw+N2ES0CyvITY19dDjh2sJ8zs0g9rp4rNAwAC
AgP9F6N+z2baqrm/Wi2tTVoEpDL8Y+BF6Wz3FI7pdLZxOojEGI6ELfChH3P3VDoh
LjduRMt9VUyhD/9Sl7BmFJOlUczLuQICv3toOINtHlY6gH8KM2nh1dfcB80Gwg9V
oGE71lXO6T6wMNy6KmFxLYLscFh592ThpXsvn8GBPOfIZTCJAEYEGBECAAYFAjqX
9j0ACgkQGQaiQpjjHCwJ1ACfWjQlxRaS+Xj/qv5z3cceMevCetgAoJFbuuMHXl/X
NTFrAkXTg0J1MYVH
=Wx2A
-----END PGP PUBLIC KEY BLOCK-----

We can use the encryption key to encrypt the small message. Here is the result:

-----BEGIN PGP MESSAGE-----
Version: PGP 6.5.8

qANQR1DBwE4DZuAgjgADrN4QBADoJ9piyd0c9fLS25Cya6NrtR1PrY4h0k7aZzlN
p1fZbOWptzb8Pn3gkrtY3H20MWc2hhl3ER68CFwyC8BAB6EJqHwtpldB258D43iu
NffuB4vKTdu1caoT4AHSZgo2zX/Ao/JuEa0mwzhnxFGYhuvR26y2hVk7IlWyDJ6d
ZRfN3QQAx9opTjQRSjA3YJUKism8t+ba8VYEvIeRI7sukblzVF50jG6vQW3m368V
udCWwfPDbC7XM3Hwfvuw054ImYGsz3BWWGPXjQfOeOBJzKVPXArUUDv+oKfVdp7w
V/sGEErhnly7s9Q2IqyeXPc7ug99zLhXb5FRtmPf3mASwwuhrQHJLRm3eWUfKn8z
IMehG2KU3kJrNQXEU0RdWJ9gV72tQlyB6AD2tJK33tNk7gV+lw==
=5h+G
-----END PGP MESSAGE-----

Notice that the encrypted message is considerably longer than the original plaintext. Encrypted messages can be longer than the original plaintext because they usually contain header information and other details that are useful for the decryption process. This overhead is most noticeable when short messages are encrypted because PGP compresses the plaintext before encrypting it. In the case of PGP messages, the encrypted message contains (among other things) the ID code for each of the keys that can decipher the message.

Digital signatures

Instead of encrypting a message, we can use public key cryptography to digitally sign a message.

Consider the message from the previous example:

this is a test message

This message can be signed with a private key that corresponds to the public key shown. The result is a signed message:

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

this is a test message

-----BEGIN PGP SIGNATURE-----
Version: PGP 6.5.8

iQA/AwUBOpf3DRkGokKY4xwsEQKQvQCg291aRcMYyjsdeTdI0QZ2dZOHpdkAn3z8
gT7Vd/0Wadj1j+OnXLysXK+E
=CcHl
-----END PGP SIGNATURE-----

Additional information about public keys, digital signatures, and encrypted messaging can be found in the books Web Security, Privacy & Commerce, by Simson Garfinkel with Gene Spafford, and PGP: Pretty Good Privacy, by Simson Garfinkel (both by O’Reilly).

Attacks on Public Key Algorithms

Public key algorithms are theoretically easier to attack than symmetric key algorithms because the attacker (presumably) has a copy of the public key that was used to encrypt the message. The job of the attacker is further simplified because the message presumably identifies which public key encryption algorithm was used to encrypt the message.

Public key algorithm attacks generally fall into two categories: key search attacks and analytic attacks.

Key search attacks

Key search attacks are the most popular kind of attacks to mount on public key encrypted messages because they are the most easily understood. These attacks attempt to derive a private key from its corresponding public key.

In the case of the RSA public key system, key search attacks are performed by attempting to factor a large number that is associated with the public key. The number is the product of two prime numbers. Once the large composite number is factored, the private key can be readily derived from the public key.

Because of the widespread use of the RSA system, techniques for rapidly factoring large composite numbers have become of great interest to many mathematicians. But while there have been steady improvements in factoring techniques, mathematicians have not yet discovered a fast, general-purpose technique for factoring arbitrarily large numbers. Of course, the fact that no such factoring algorithm has been discovered should not be taken as proof that no such algorithm exists: there may come a time when factoring becomes a trivial problem, and the world needs to discard RSA in favor of some other public key encryption algorithm.

The most famous factoring attack at the time of this writing was the factoring of the RSA-129 challenge number. The number, named “RSA-129” because it consisted of 129 decimal digits, was first published as a challenge to readers in the September 1977 issue of Popular Science. The number was factored in 1994 by an international team of volunteers coordinated by Arjen Lenstra, then at Bellcore (the research arm of the U.S. local telephone companies), Derek Atkins, Michael Graff, and Paul Leyland.

RSA Data Security publishes a list of additional factoring challenges, with cash rewards for people who are the first to factor the numbers. You can get a complete list of the RSA challenge numbers by sending a message to .

Analytic attacks

The other way of attacking a public key encryption system is to find a fundamental flaw or weakness in the mathematical problem on which the encryption system is based. Don’t scoff—this has been done at least once before. The first public key encryption system to be patented was based on a mathematical problem called the Superincreasing Knapsack Problem. A few years after this technique was suggested, a way was found to mathematically derive the secret key from the public key in a very short amount of time.

Known versus published methods

It is worth noting that it is always possible that there is a difference between the best known methods and the best published methods. If a major mathematical breakthrough in factoring is discovered, it might not be published for all to see. For example, if a new method is developed by a government agency, it might be kept secret to be used against encrypted messages sent by officials of other countries. Likewise, if a new method is developed by someone with criminal tendencies, it might be kept secret to be used in future economic crimes involving existing encryption methods.



[90] For more information on cryptographic key sizes, see “Selecting Cryptographic Key Sizes,” by Arjen K. Lenstra and Eric R. Verheul, available from http://cryptosavvy.com/cryptosizes.pdf and http://cryptosavvy.com/toc.pdf.