Table of Contents for
Practical UNIX and Internet Security, 3rd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Practical UNIX and Internet Security, 3rd Edition by Alan Schwartz Published by O'Reilly Media, Inc., 2003
  1. Cover
  2. Practical Unix & Internet Security, 3rd Edition
  3. A Note Regarding Supplemental Files
  4. Preface
  5. Unix “Security”?
  6. Scope of This Book
  7. Which Unix System?
  8. Conventions Used in This Book
  9. Comments and Questions
  10. Acknowledgments
  11. A Note to Would-Be Attackers
  12. I. Computer Security Basics
  13. 1. Introduction: Some Fundamental Questions
  14. What Is Computer Security?
  15. What Is an Operating System?
  16. What Is a Deployment Environment?
  17. Summary
  18. 2. Unix History and Lineage
  19. History of Unix
  20. Security and Unix
  21. Role of This Book
  22. Summary
  23. 3. Policies and Guidelines
  24. Planning Your Security Needs
  25. Risk Assessment
  26. Cost-Benefit Analysis and Best Practices
  27. Policy
  28. Compliance Audits
  29. Outsourcing Options
  30. The Problem with Security Through Obscurity
  31. Summary
  32. II. Security Building Blocks
  33. 4. Users, Passwords, and Authentication
  34. Logging in with Usernames and Passwords
  35. The Care and Feeding of Passwords
  36. How Unix Implements Passwords
  37. Network Account and Authorization Systems
  38. Pluggable Authentication Modules (PAM)
  39. Summary
  40. 5. Users, Groups, and the Superuser
  41. Users and Groups
  42. The Superuser (root)
  43. The su Command: Changing Who You Claim to Be
  44. Restrictions on the Superuser
  45. Summary
  46. 6. Filesystems and Security
  47. Understanding Filesystems
  48. File Attributes and Permissions
  49. chmod: Changing a File’s Permissions
  50. The umask
  51. SUID and SGID
  52. Device Files
  53. Changing a File’s Owner or Group
  54. Summary
  55. 7. Cryptography Basics
  56. Understanding Cryptography
  57. Symmetric Key Algorithms
  58. Public Key Algorithms
  59. Message Digest Functions
  60. Summary
  61. 8. Physical Security for Servers
  62. Planning for the Forgotten Threats
  63. Protecting Computer Hardware
  64. Preventing Theft
  65. Protecting Your Data
  66. Story: A Failed Site Inspection
  67. Summary
  68. 9. Personnel Security
  69. Background Checks
  70. On the Job
  71. Departure
  72. Other People
  73. Summary
  74. III. Network and Internet Security
  75. 10. Modems and Dialup Security
  76. Modems: Theory of Operation
  77. Modems and Security
  78. Modems and Unix
  79. Additional Security for Modems
  80. Summary
  81. 11. TCP/IP Networks
  82. Networking
  83. IP: The Internet Protocol
  84. IP Security
  85. Summary
  86. 12. Securing TCP and UDP Services
  87. Understanding Unix Internet Servers and Services
  88. Controlling Access to Servers
  89. Primary Unix Network Services
  90. Managing Services Securely
  91. Putting It All Together: An Example
  92. Summary
  93. 13. Sun RPC
  94. Remote Procedure Call (RPC)
  95. Secure RPC (AUTH_DES)
  96. Summary
  97. 14. Network-Based Authentication Systems
  98. Sun’s Network Information Service (NIS)
  99. Sun’s NIS+
  100. Kerberos
  101. LDAP
  102. Other Network Authentication Systems
  103. Summary
  104. 15. Network Filesystems
  105. Understanding NFS
  106. Server-Side NFS Security
  107. Client-Side NFS Security
  108. Improving NFS Security
  109. Some Last Comments on NFS
  110. Understanding SMB
  111. Summary
  112. 16. Secure Programming Techniques
  113. One Bug Can Ruin Your Whole Day . . .
  114. Tips on Avoiding Security-Related Bugs
  115. Tips on Writing Network Programs
  116. Tips on Writing SUID/SGID Programs
  117. Using chroot( )
  118. Tips on Using Passwords
  119. Tips on Generating Random Numbers
  120. Summary
  121. IV. Secure Operations
  122. 17. Keeping Up to Date
  123. Software Management Systems
  124. Updating System Software
  125. Summary
  126. 18. Backups
  127. Why Make Backups?
  128. Backing Up System Files
  129. Software for Backups
  130. Summary
  131. 19. Defending Accounts
  132. Dangerous Accounts
  133. Monitoring File Format
  134. Restricting Logins
  135. Managing Dormant Accounts
  136. Protecting the root Account
  137. One-Time Passwords
  138. Administrative Techniques for Conventional Passwords
  139. Intrusion Detection Systems
  140. Summary
  141. 20. Integrity Management
  142. The Need for Integrity
  143. Protecting Integrity
  144. Detecting Changes After the Fact
  145. Integrity-Checking Tools
  146. Summary
  147. 21. Auditing, Logging, and Forensics
  148. Unix Log File Utilities
  149. Process Accounting: The acct/pacct File
  150. Program-Specific Log Files
  151. Designing a Site-Wide Log Policy
  152. Handwritten Logs
  153. Managing Log Files
  154. Unix Forensics
  155. Summary
  156. V. Handling Security Incidents
  157. 22. Discovering a Break-in
  158. Prelude
  159. Discovering an Intruder
  160. Cleaning Up After the Intruder
  161. Case Studies
  162. Summary
  163. 23. Protecting Against Programmed Threats
  164. Programmed Threats: Definitions
  165. Damage
  166. Authors
  167. Entry
  168. Protecting Yourself
  169. Preventing Attacks
  170. Summary
  171. 24. Denial of Service Attacks and Solutions
  172. Types of Attacks
  173. Destructive Attacks
  174. Overload Attacks
  175. Network Denial of Service Attacks
  176. Summary
  177. 25. Computer Crime
  178. Your Legal Options After a Break-in
  179. Criminal Hazards
  180. Criminal Subject Matter
  181. Summary
  182. 26. Who Do You Trust?
  183. Can You Trust Your Computer?
  184. Can You Trust Your Suppliers?
  185. Can You Trust People?
  186. Summary
  187. VI. Appendixes
  188. A. Unix Security Checklist
  189. Preface
  190. Chapter 1: Introduction: Some Fundamental Questions
  191. Chapter 2: Unix History and Lineage
  192. Chapter 3: Policies and Guidelines
  193. Chapter 4: Users, Passwords, and Authentication
  194. Chapter 5: Users, Groups, and the Superuser
  195. Chapter 6: Filesystems and Security
  196. Chapter 7: Cryptography Basics
  197. Chapter 8: Physical Security for Servers
  198. Chapter 9: Personnel Security
  199. Chapter 10: Modems and Dialup Security
  200. Chapter 11: TCP/IP Networks
  201. Chapter 12: Securing TCP and UDP Services
  202. Chapter 13: Sun RPC
  203. Chapter 14: Network-Based Authentication Systems
  204. Chapter 15: Network Filesystems
  205. Chapter 16: Secure Programming Techniques
  206. Chapter 17: Keeping Up to Date
  207. Chapter 18: Backups
  208. Chapter 19: Defending Accounts
  209. Chapter 20: Integrity Management
  210. Chapter 21: Auditing, Logging, and Forensics
  211. Chapter 22: Discovering a Break-In
  212. Chapter 23: Protecting Against Programmed Threats
  213. Chapter 24: Denial of Service Attacks and Solutions
  214. Chapter 25: Computer Crime
  215. Chapter 26: Who Do You Trust?
  216. Appendix A: Unix Security Checklist
  217. Appendix B: Unix Processes
  218. Appendixes C, D, and E: Paper Sources, Electronic Sources, and Organizations
  219. B. Unix Processes
  220. About Processes
  221. Signals
  222. Controlling and Examining Processes
  223. Starting Up Unix and Logging In
  224. C. Paper Sources
  225. Unix Security References
  226. Other Computer References
  227. D. Electronic Resources
  228. Mailing Lists
  229. Web Sites
  230. Usenet Groups
  231. Software Resources
  232. E. Organizations
  233. Professional Organizations
  234. U.S. Government Organizations
  235. Emergency Response Organizations
  236. Index
  237. Index
  238. Index
  239. Index
  240. Index
  241. Index
  242. Index
  243. Index
  244. Index
  245. Index
  246. Index
  247. Index
  248. Index
  249. Index
  250. Index
  251. Index
  252. Index
  253. Index
  254. Index
  255. Index
  256. Index
  257. Index
  258. Index
  259. Index
  260. Index
  261. Index
  262. Index
  263. About the Authors
  264. Colophon
  265. Copyright

Server-Side NFS Security

Because NFS allows users on a network to access files stored on the server, NFS has significant security implications for the server. These implications fall into three broad categories:

Client access

NFS can (and should) be configured so that only certain clients on the network can mount filesystems stored on the server.

User authentication

NFS can (and should) be configured so that users can access and alter only files to which they have been granted access.

Eavesdropping and data spoofing

NFS should (but does not) protect information on the network from eavesdropping and surreptitious modification.

Limiting Client Access: /etc/exports and /etc/dfs/dfstab

The NFS server can be configured so that only certain hosts are allowed to mount filesystems on the server. This is a very important step in maintaining server security: if an unauthorized host is denied the ability to mount a filesystem, then unauthorized users on that host should not be able to access the server’s files. This configuration is controlled by settings in a file. Depending on the version of Unix/Linux/etc. that you are using, the specific file structure and usage is different. Systems with a BSD heritage use /etc/exports, and systems with a System V heritage use /etc/dfs/dfstab.

/etc/exports

Many versions of Unix, including Sun’s SunOS, HP’s HP-UX, SGI’s IRIX, and Linux use the /etc/exports file to designate which clients can mount the server’s filesystem and what access those clients can be given. Each line in the /etc/exports file generally has the form:

                     directory -options [,more options]

For example, a sample /etc/exports file might look like this:

/ -access=math,root=prose.domain.edu
/usr -ro
/usr/spool/mail -access=math

The directory may be any directory or filesystem on your server. In the example, exported directories are /, /usr, and /usr/spool/mail.

The options allow you to specify a variety of security-related and performance-related options for each entry. These include:

access= machinelist

Grants access to this filesystem only to the hosts or netgroups (see Chapter 12) specified in machinelist. The names of hosts and netgroups are listed and separated by colons (e.g., host1:host2:group3). A maximum of 10 hosts or group names can be listed in some older systems (check your documentation).[219]

ro

Exports the directory and its contents as read-only to all clients. This option overrides whatever the file permission bits are actually set to.

rw= machinelist

Exports the filesystem read-only to all hosts except those listed, which are allowed read/write access to the filesystem.

root= machinelist

Normally, NFS changes the user ID for requests issued by the superuser on remote machines from 0 (root) to -2 (nobody). Specifying a list of hosts gives the superuser on these remote machines superuser access on the server.

anon= uid

Specifies which user ID to use on NFS requests that are not accompanied by a user ID; this might happen on a DOS client. The number specified is used for both the UID and the GID of anonymous requests. A value of -2 is the nobody user. A value of -1 usually disallows access.

secure

Specifies that NFS should use Sun’s Secure RPC (AUTH_DES) authentication system, instead of AUTH_UNIX. See Chapter 13 for more information.

You should understand that NFS maintains options on a per-filesystem basis, not on a per-directory basis. If you put two directories in the /etc/exports file that actually reside on the same filesystem, they will use the same options (usually the options used in the last export listed).

Sun’s documentation of anon states that, “If a request comes from an unknown user, use the given UID as the effective user ID.” This statement is very misleading; in fact, NFS by default honors “unknown” user IDs—that is, UIDs that are not in the server’s /etc/passwd file—in the same way that it honors “known” UIDs because the NFS server does not ever read the contents of the /etc/passwd file. The anon option actually specifies which UID to use for NFS requests that are not accompanied by authentication credentials.

Let’s look at the example /etc/exports file again:

/ -access=math,root=prose.domain.edu
/usr -ro
/usr/spool/mail -access=math

This example allows anybody in the group math or on the machine math to mount the root directory of the server, but only the root user on machine prose.domain.edu has superuser access to these files. The /usr filesystem is exported read-only to every machine that can get RPC packets to and from this server (usually a bad idea—this may be a wider audience than the local network). And the /usr/spool/mail directory is exported to any host in the math netgroup.

/usr/etc/exportfs

The /usr/etc/exportfs program reads the /etc/exports file and configures the NFS servers,[220] which run inside the kernel’s address space. After you make a change to /etc/exports, be sure to type this on the server:

# exportfs -a

You can also use the exportfs command to temporarily change the options on a filesystem. Because different versions of the command have slightly different syntax, you should consult your documentation.

Exporting NFS directories under System V: share and dfstab

Versions of NFS that are present on System V-derived systems (including Solaris) have dispensed with the /etc/exports file and have instead adopted a more general mechanism for dealing with many kinds of distributed filesystems in a uniform manner. These systems use a command named share to extend access for a filesystem to a remote machine, and the command unshare to revoke access.

The share command has the syntax:

share [ -F FSType ] [ -o specific_options ] [ -d description ] [ pathname ]

in which FSType should be nfs for NFS filesystems, and specific_options are basically the same as those documented earlier for the /etc/exportfs file. The optional argument description is meant to be a human-readable description of the filesystem that is being shared.

When a system using this mechanism boots, its network initialization scripts execute the shell script /etc/dfs/dfstab. This file contains a list of share commands. Example 15-1 illustrates such a file with some security problems.

Example 15-1. An /etc/dfs/dfstab file with some problems

#       Place share(1M) commands here for automatic execution
#       upon entering init state 3.
#
#       This configuration is not secure.
#
share -F nfs -o rw=red:blue:green /cpg
share -F nfs -o rw=clients -d "spool" /var/spool
share -F nfs /tftpboot
share -F nfs -o ro /usr/lib/X11/ncd
share -F nfs -o ro /usr/openwin

This file gives the computers red, blue, and green access to the /cpg filesystem; it also gives all of the computers in the clients netgroup access to /var/spool. All computers on the network are given read/write access to the /tftpboot directory; and all computers on the network are given read-only access to the directories /usr/lib/X11/ncd and /usr/openwin.

Do you see the security hole in the above configuration? It’s explained in detail in Section 15.4.1.1 later in this chapter.

Note

Under some old versions of Unix, there was a problem if you exported any of your filesystems to yourself by name, by netgroup, or to localhost. This came about if your RPC portmapper had proxy forwarding enabled (often the default). If proxy forwarding was enabled, an attacker could carefully craft NFS packets and send them to the portmapper, which in turn forwarded them to the NFS server. As the packets came from the portmapper process (which was running as root), they appeared to be coming from a trusted system. This configuration could allow anyone to alter and delete files at will.

We are uncertain which systems may still harbor this vulnerability. Thus, caution is the prudent course of action if you feel the need to make such loopback mounts.

The showmount Command

You can use the Unix command showmount (typically located in /usr/sbin or /usr/etc and present in most flavors of Unix) to list all of the clients that have probably mounted directories from your server. This command has the form:

/usr/etc/showmount [options] [host]

The options are:

-a

Lists all of the hosts and which directories they have mounted

-d

Lists only the directories that have been remotely mounted

-e

Lists all of the filesystems that are exported; this option is described in more detail later in this chapter

Tip

The showmount command does not tell you which hosts are actually using your exported filesystems; it shows you only the names of the hosts that have mounted your filesystems since the last reset of the local log file. Because of the design of NFS, someone can use a filesystem without first mounting it.



[219] There was an old bug in NFS that caused a filesystem to be exported to the world if an exports line exceeded 256 characters after name alias expansion. Use showmount -e to verify when finished.

[220] For performance reasons, there is often more than one server process running.