Table of Contents for
Practical UNIX and Internet Security, 3rd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Practical UNIX and Internet Security, 3rd Edition by Alan Schwartz Published by O'Reilly Media, Inc., 2003
  1. Cover
  2. Practical Unix & Internet Security, 3rd Edition
  3. A Note Regarding Supplemental Files
  4. Preface
  5. Unix “Security”?
  6. Scope of This Book
  7. Which Unix System?
  8. Conventions Used in This Book
  9. Comments and Questions
  10. Acknowledgments
  11. A Note to Would-Be Attackers
  12. I. Computer Security Basics
  13. 1. Introduction: Some Fundamental Questions
  14. What Is Computer Security?
  15. What Is an Operating System?
  16. What Is a Deployment Environment?
  17. Summary
  18. 2. Unix History and Lineage
  19. History of Unix
  20. Security and Unix
  21. Role of This Book
  22. Summary
  23. 3. Policies and Guidelines
  24. Planning Your Security Needs
  25. Risk Assessment
  26. Cost-Benefit Analysis and Best Practices
  27. Policy
  28. Compliance Audits
  29. Outsourcing Options
  30. The Problem with Security Through Obscurity
  31. Summary
  32. II. Security Building Blocks
  33. 4. Users, Passwords, and Authentication
  34. Logging in with Usernames and Passwords
  35. The Care and Feeding of Passwords
  36. How Unix Implements Passwords
  37. Network Account and Authorization Systems
  38. Pluggable Authentication Modules (PAM)
  39. Summary
  40. 5. Users, Groups, and the Superuser
  41. Users and Groups
  42. The Superuser (root)
  43. The su Command: Changing Who You Claim to Be
  44. Restrictions on the Superuser
  45. Summary
  46. 6. Filesystems and Security
  47. Understanding Filesystems
  48. File Attributes and Permissions
  49. chmod: Changing a File’s Permissions
  50. The umask
  51. SUID and SGID
  52. Device Files
  53. Changing a File’s Owner or Group
  54. Summary
  55. 7. Cryptography Basics
  56. Understanding Cryptography
  57. Symmetric Key Algorithms
  58. Public Key Algorithms
  59. Message Digest Functions
  60. Summary
  61. 8. Physical Security for Servers
  62. Planning for the Forgotten Threats
  63. Protecting Computer Hardware
  64. Preventing Theft
  65. Protecting Your Data
  66. Story: A Failed Site Inspection
  67. Summary
  68. 9. Personnel Security
  69. Background Checks
  70. On the Job
  71. Departure
  72. Other People
  73. Summary
  74. III. Network and Internet Security
  75. 10. Modems and Dialup Security
  76. Modems: Theory of Operation
  77. Modems and Security
  78. Modems and Unix
  79. Additional Security for Modems
  80. Summary
  81. 11. TCP/IP Networks
  82. Networking
  83. IP: The Internet Protocol
  84. IP Security
  85. Summary
  86. 12. Securing TCP and UDP Services
  87. Understanding Unix Internet Servers and Services
  88. Controlling Access to Servers
  89. Primary Unix Network Services
  90. Managing Services Securely
  91. Putting It All Together: An Example
  92. Summary
  93. 13. Sun RPC
  94. Remote Procedure Call (RPC)
  95. Secure RPC (AUTH_DES)
  96. Summary
  97. 14. Network-Based Authentication Systems
  98. Sun’s Network Information Service (NIS)
  99. Sun’s NIS+
  100. Kerberos
  101. LDAP
  102. Other Network Authentication Systems
  103. Summary
  104. 15. Network Filesystems
  105. Understanding NFS
  106. Server-Side NFS Security
  107. Client-Side NFS Security
  108. Improving NFS Security
  109. Some Last Comments on NFS
  110. Understanding SMB
  111. Summary
  112. 16. Secure Programming Techniques
  113. One Bug Can Ruin Your Whole Day . . .
  114. Tips on Avoiding Security-Related Bugs
  115. Tips on Writing Network Programs
  116. Tips on Writing SUID/SGID Programs
  117. Using chroot( )
  118. Tips on Using Passwords
  119. Tips on Generating Random Numbers
  120. Summary
  121. IV. Secure Operations
  122. 17. Keeping Up to Date
  123. Software Management Systems
  124. Updating System Software
  125. Summary
  126. 18. Backups
  127. Why Make Backups?
  128. Backing Up System Files
  129. Software for Backups
  130. Summary
  131. 19. Defending Accounts
  132. Dangerous Accounts
  133. Monitoring File Format
  134. Restricting Logins
  135. Managing Dormant Accounts
  136. Protecting the root Account
  137. One-Time Passwords
  138. Administrative Techniques for Conventional Passwords
  139. Intrusion Detection Systems
  140. Summary
  141. 20. Integrity Management
  142. The Need for Integrity
  143. Protecting Integrity
  144. Detecting Changes After the Fact
  145. Integrity-Checking Tools
  146. Summary
  147. 21. Auditing, Logging, and Forensics
  148. Unix Log File Utilities
  149. Process Accounting: The acct/pacct File
  150. Program-Specific Log Files
  151. Designing a Site-Wide Log Policy
  152. Handwritten Logs
  153. Managing Log Files
  154. Unix Forensics
  155. Summary
  156. V. Handling Security Incidents
  157. 22. Discovering a Break-in
  158. Prelude
  159. Discovering an Intruder
  160. Cleaning Up After the Intruder
  161. Case Studies
  162. Summary
  163. 23. Protecting Against Programmed Threats
  164. Programmed Threats: Definitions
  165. Damage
  166. Authors
  167. Entry
  168. Protecting Yourself
  169. Preventing Attacks
  170. Summary
  171. 24. Denial of Service Attacks and Solutions
  172. Types of Attacks
  173. Destructive Attacks
  174. Overload Attacks
  175. Network Denial of Service Attacks
  176. Summary
  177. 25. Computer Crime
  178. Your Legal Options After a Break-in
  179. Criminal Hazards
  180. Criminal Subject Matter
  181. Summary
  182. 26. Who Do You Trust?
  183. Can You Trust Your Computer?
  184. Can You Trust Your Suppliers?
  185. Can You Trust People?
  186. Summary
  187. VI. Appendixes
  188. A. Unix Security Checklist
  189. Preface
  190. Chapter 1: Introduction: Some Fundamental Questions
  191. Chapter 2: Unix History and Lineage
  192. Chapter 3: Policies and Guidelines
  193. Chapter 4: Users, Passwords, and Authentication
  194. Chapter 5: Users, Groups, and the Superuser
  195. Chapter 6: Filesystems and Security
  196. Chapter 7: Cryptography Basics
  197. Chapter 8: Physical Security for Servers
  198. Chapter 9: Personnel Security
  199. Chapter 10: Modems and Dialup Security
  200. Chapter 11: TCP/IP Networks
  201. Chapter 12: Securing TCP and UDP Services
  202. Chapter 13: Sun RPC
  203. Chapter 14: Network-Based Authentication Systems
  204. Chapter 15: Network Filesystems
  205. Chapter 16: Secure Programming Techniques
  206. Chapter 17: Keeping Up to Date
  207. Chapter 18: Backups
  208. Chapter 19: Defending Accounts
  209. Chapter 20: Integrity Management
  210. Chapter 21: Auditing, Logging, and Forensics
  211. Chapter 22: Discovering a Break-In
  212. Chapter 23: Protecting Against Programmed Threats
  213. Chapter 24: Denial of Service Attacks and Solutions
  214. Chapter 25: Computer Crime
  215. Chapter 26: Who Do You Trust?
  216. Appendix A: Unix Security Checklist
  217. Appendix B: Unix Processes
  218. Appendixes C, D, and E: Paper Sources, Electronic Sources, and Organizations
  219. B. Unix Processes
  220. About Processes
  221. Signals
  222. Controlling and Examining Processes
  223. Starting Up Unix and Logging In
  224. C. Paper Sources
  225. Unix Security References
  226. Other Computer References
  227. D. Electronic Resources
  228. Mailing Lists
  229. Web Sites
  230. Usenet Groups
  231. Software Resources
  232. E. Organizations
  233. Professional Organizations
  234. U.S. Government Organizations
  235. Emergency Response Organizations
  236. Index
  237. Index
  238. Index
  239. Index
  240. Index
  241. Index
  242. Index
  243. Index
  244. Index
  245. Index
  246. Index
  247. Index
  248. Index
  249. Index
  250. Index
  251. Index
  252. Index
  253. Index
  254. Index
  255. Index
  256. Index
  257. Index
  258. Index
  259. Index
  260. Index
  261. Index
  262. Index
  263. About the Authors
  264. Colophon
  265. Copyright

Planning Your Security Needs

There are many different kinds of computer security, and many different definitions. Rather than present a formal definition, this book takes a practical approach and discusses the categories of protection you should consider. Basically, we know a computer is secure if it behaves the way you expect it to. We believe that secure computers are usable computers and, likewise, that computers that cannot be used, for whatever the reason, are not very secure.

Types of Security

Within our broad definition of computer security, there are many different types of security that both users and administrators of computer systems need to be concerned about:

Confidentiality

Protecting information from being read or copied by anyone who has not been explicitly authorized by the owner of that information. This type of security includes not only protecting the information in toto, but also protecting individual pieces of information that may seem harmless by themselves but can be used to infer other confidential information.

Data integrity

Protecting information (including programs) from being deleted or altered in any way without the permission of the owner of that information. Information to be protected also includes items such as accounting records, backup tapes, file creation times, and documentation.

Availability

Protecting your services so they’re not degraded or made unavailable (crashed) without authorization. If the systems or data are unavailable when an authorized user needs them, the result can be as bad as having the information that resides on the system deleted.

Consistency

Making sure that the system behaves as expected by the authorized users. If software or hardware suddenly starts behaving radically different from the way it used to behave, especially after an upgrade or a bug fix, a disaster could occur. Imagine if your ls command occasionally deleted files instead of listing them! This type of security can also be considered as ensuring the correctness of the data and software you use.

Control

Regulating access to your system. If unknown and unauthorized individuals (or software) are found on your system, they can create a big problem. You must worry about how they got in, what they might have done, and who or what else has also accessed your system. Recovering from such episodes can require considerable time and expense in rebuilding and reinstalling your system, and verifying that nothing important has been changed or disclosed—even if nothing actually happened.

Audit

As well as worrying about unauthorized users, you need to realize that authorized users sometimes make mistakes, or even commit malicious acts. In such cases, you need to determine what was done, by whom, and what was affected. The only sure way to achieve these results is by having some incorruptible record of activity on your system that positively identifies the actors and actions involved. In some critical applications, the audit trail may be extensive enough to allow “undo” operations to help restore the system to a correct state.

Although all of these aspects of security are important, different organizations will view each with a different amount of importance. This variance is because different organizations have different security concerns, and must set their priorities and policies accordingly. For example:

A banking environment

In such an environment, integrity, control, and auditability are usually the most critical concerns, while confidentiality and availability are less important.

A national defense-related system that processes classified information

In such an environment, confidentiality may come first, and availability last. In some highly classified environments, officials may prefer to blow up a building rather than allow an attacker to access the information contained within that building’s walls.

A university

In such an environment, integrity and availability may be the most important requirements. It is more important to ensure that students can work on their papers, than that administrators can track the precise times their students accessed their accounts.

If you are a security administrator, you need to thoroughly understand the needs of your operational environment and users. You then need to define your procedures accordingly. Not everything we describe in this book will be appropriate in every environment.

Trust

Security professionals generally don’t refer to a computer system as being “secure” or “unsecure.”[19] Instead, we use the word trust to describe our level of confidence that a computer system will behave as expected. This acknowledges that absolute security can never be present. We can only try to approach it by developing enough trust in the overall configuration to warrant using it for the applications we have in mind.

Developing adequate trust in your computer systems requires careful thought and planning. Operational decisions should be based on sound policy and risk analysis. In the remainder of this chapter, we’ll discuss the general procedures for creating workable security plans and policies. The topic is too big, however, for us to provide an in-depth treatment:

  • If you are at a company, university, or government agency, we suggest that you contact your internal audit and/or risk management department for additional help (they may already have some plans and policies in place that you should know about). You can also learn more about this topic by consulting some of the works referenced in Appendix C. You may also wish to enlist a consulting firm. For example, many large accounting and audit firms now have teams of professionals that can evaluate the security of computer installations.

  • If you are with a smaller institution or are dealing with a personal machine, you may decide that we cover these issues in greater detail than you actually need. Nevertheless, the information contained in this chapter should help guide you in setting your priorities.



[19] We use the term unsecure to mean having weak security, and insecure to describe the state of mind of people running unsecure systems.