Table of Contents for
Practical UNIX and Internet Security, 3rd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Practical UNIX and Internet Security, 3rd Edition by Alan Schwartz Published by O'Reilly Media, Inc., 2003
  1. Cover
  2. Practical Unix & Internet Security, 3rd Edition
  3. A Note Regarding Supplemental Files
  4. Preface
  5. Unix “Security”?
  6. Scope of This Book
  7. Which Unix System?
  8. Conventions Used in This Book
  9. Comments and Questions
  10. Acknowledgments
  11. A Note to Would-Be Attackers
  12. I. Computer Security Basics
  13. 1. Introduction: Some Fundamental Questions
  14. What Is Computer Security?
  15. What Is an Operating System?
  16. What Is a Deployment Environment?
  17. Summary
  18. 2. Unix History and Lineage
  19. History of Unix
  20. Security and Unix
  21. Role of This Book
  22. Summary
  23. 3. Policies and Guidelines
  24. Planning Your Security Needs
  25. Risk Assessment
  26. Cost-Benefit Analysis and Best Practices
  27. Policy
  28. Compliance Audits
  29. Outsourcing Options
  30. The Problem with Security Through Obscurity
  31. Summary
  32. II. Security Building Blocks
  33. 4. Users, Passwords, and Authentication
  34. Logging in with Usernames and Passwords
  35. The Care and Feeding of Passwords
  36. How Unix Implements Passwords
  37. Network Account and Authorization Systems
  38. Pluggable Authentication Modules (PAM)
  39. Summary
  40. 5. Users, Groups, and the Superuser
  41. Users and Groups
  42. The Superuser (root)
  43. The su Command: Changing Who You Claim to Be
  44. Restrictions on the Superuser
  45. Summary
  46. 6. Filesystems and Security
  47. Understanding Filesystems
  48. File Attributes and Permissions
  49. chmod: Changing a File’s Permissions
  50. The umask
  51. SUID and SGID
  52. Device Files
  53. Changing a File’s Owner or Group
  54. Summary
  55. 7. Cryptography Basics
  56. Understanding Cryptography
  57. Symmetric Key Algorithms
  58. Public Key Algorithms
  59. Message Digest Functions
  60. Summary
  61. 8. Physical Security for Servers
  62. Planning for the Forgotten Threats
  63. Protecting Computer Hardware
  64. Preventing Theft
  65. Protecting Your Data
  66. Story: A Failed Site Inspection
  67. Summary
  68. 9. Personnel Security
  69. Background Checks
  70. On the Job
  71. Departure
  72. Other People
  73. Summary
  74. III. Network and Internet Security
  75. 10. Modems and Dialup Security
  76. Modems: Theory of Operation
  77. Modems and Security
  78. Modems and Unix
  79. Additional Security for Modems
  80. Summary
  81. 11. TCP/IP Networks
  82. Networking
  83. IP: The Internet Protocol
  84. IP Security
  85. Summary
  86. 12. Securing TCP and UDP Services
  87. Understanding Unix Internet Servers and Services
  88. Controlling Access to Servers
  89. Primary Unix Network Services
  90. Managing Services Securely
  91. Putting It All Together: An Example
  92. Summary
  93. 13. Sun RPC
  94. Remote Procedure Call (RPC)
  95. Secure RPC (AUTH_DES)
  96. Summary
  97. 14. Network-Based Authentication Systems
  98. Sun’s Network Information Service (NIS)
  99. Sun’s NIS+
  100. Kerberos
  101. LDAP
  102. Other Network Authentication Systems
  103. Summary
  104. 15. Network Filesystems
  105. Understanding NFS
  106. Server-Side NFS Security
  107. Client-Side NFS Security
  108. Improving NFS Security
  109. Some Last Comments on NFS
  110. Understanding SMB
  111. Summary
  112. 16. Secure Programming Techniques
  113. One Bug Can Ruin Your Whole Day . . .
  114. Tips on Avoiding Security-Related Bugs
  115. Tips on Writing Network Programs
  116. Tips on Writing SUID/SGID Programs
  117. Using chroot( )
  118. Tips on Using Passwords
  119. Tips on Generating Random Numbers
  120. Summary
  121. IV. Secure Operations
  122. 17. Keeping Up to Date
  123. Software Management Systems
  124. Updating System Software
  125. Summary
  126. 18. Backups
  127. Why Make Backups?
  128. Backing Up System Files
  129. Software for Backups
  130. Summary
  131. 19. Defending Accounts
  132. Dangerous Accounts
  133. Monitoring File Format
  134. Restricting Logins
  135. Managing Dormant Accounts
  136. Protecting the root Account
  137. One-Time Passwords
  138. Administrative Techniques for Conventional Passwords
  139. Intrusion Detection Systems
  140. Summary
  141. 20. Integrity Management
  142. The Need for Integrity
  143. Protecting Integrity
  144. Detecting Changes After the Fact
  145. Integrity-Checking Tools
  146. Summary
  147. 21. Auditing, Logging, and Forensics
  148. Unix Log File Utilities
  149. Process Accounting: The acct/pacct File
  150. Program-Specific Log Files
  151. Designing a Site-Wide Log Policy
  152. Handwritten Logs
  153. Managing Log Files
  154. Unix Forensics
  155. Summary
  156. V. Handling Security Incidents
  157. 22. Discovering a Break-in
  158. Prelude
  159. Discovering an Intruder
  160. Cleaning Up After the Intruder
  161. Case Studies
  162. Summary
  163. 23. Protecting Against Programmed Threats
  164. Programmed Threats: Definitions
  165. Damage
  166. Authors
  167. Entry
  168. Protecting Yourself
  169. Preventing Attacks
  170. Summary
  171. 24. Denial of Service Attacks and Solutions
  172. Types of Attacks
  173. Destructive Attacks
  174. Overload Attacks
  175. Network Denial of Service Attacks
  176. Summary
  177. 25. Computer Crime
  178. Your Legal Options After a Break-in
  179. Criminal Hazards
  180. Criminal Subject Matter
  181. Summary
  182. 26. Who Do You Trust?
  183. Can You Trust Your Computer?
  184. Can You Trust Your Suppliers?
  185. Can You Trust People?
  186. Summary
  187. VI. Appendixes
  188. A. Unix Security Checklist
  189. Preface
  190. Chapter 1: Introduction: Some Fundamental Questions
  191. Chapter 2: Unix History and Lineage
  192. Chapter 3: Policies and Guidelines
  193. Chapter 4: Users, Passwords, and Authentication
  194. Chapter 5: Users, Groups, and the Superuser
  195. Chapter 6: Filesystems and Security
  196. Chapter 7: Cryptography Basics
  197. Chapter 8: Physical Security for Servers
  198. Chapter 9: Personnel Security
  199. Chapter 10: Modems and Dialup Security
  200. Chapter 11: TCP/IP Networks
  201. Chapter 12: Securing TCP and UDP Services
  202. Chapter 13: Sun RPC
  203. Chapter 14: Network-Based Authentication Systems
  204. Chapter 15: Network Filesystems
  205. Chapter 16: Secure Programming Techniques
  206. Chapter 17: Keeping Up to Date
  207. Chapter 18: Backups
  208. Chapter 19: Defending Accounts
  209. Chapter 20: Integrity Management
  210. Chapter 21: Auditing, Logging, and Forensics
  211. Chapter 22: Discovering a Break-In
  212. Chapter 23: Protecting Against Programmed Threats
  213. Chapter 24: Denial of Service Attacks and Solutions
  214. Chapter 25: Computer Crime
  215. Chapter 26: Who Do You Trust?
  216. Appendix A: Unix Security Checklist
  217. Appendix B: Unix Processes
  218. Appendixes C, D, and E: Paper Sources, Electronic Sources, and Organizations
  219. B. Unix Processes
  220. About Processes
  221. Signals
  222. Controlling and Examining Processes
  223. Starting Up Unix and Logging In
  224. C. Paper Sources
  225. Unix Security References
  226. Other Computer References
  227. D. Electronic Resources
  228. Mailing Lists
  229. Web Sites
  230. Usenet Groups
  231. Software Resources
  232. E. Organizations
  233. Professional Organizations
  234. U.S. Government Organizations
  235. Emergency Response Organizations
  236. Index
  237. Index
  238. Index
  239. Index
  240. Index
  241. Index
  242. Index
  243. Index
  244. Index
  245. Index
  246. Index
  247. Index
  248. Index
  249. Index
  250. Index
  251. Index
  252. Index
  253. Index
  254. Index
  255. Index
  256. Index
  257. Index
  258. Index
  259. Index
  260. Index
  261. Index
  262. Index
  263. About the Authors
  264. Colophon
  265. Copyright

Signals

Signals are a simple Unix mechanism for controlling processes. A signal is a 5-bit message to a process that requires immediate attention. Each signal has a default action associated with it; for some signals, you can change this default action. Signals are generated by exceptions, which include:

  • Attempts to use illegal instructions

  • Certain kinds of mathematical operations

  • Window resize events

  • Predefined alarms, including expiration of a timer

  • The user pressing an interrupt key on a terminal

  • Another program using the kill( ) or killpg( ) system calls

  • A program running in the background attempting to read from or write to its controlling terminal

  • A child process calling exit or terminating abnormally

The system default may be to ignore the signal, to terminate the process receiving the signal (and, optionally, generate a core file), or to suspend the process until it receives a continuation signal. Some signals can be caught—that is, a program can specify a particular function that should be run when the signal is received. As originally designed, Unix supports exactly 31 signals. Some vendors, such as Sun, have extended this set to include more signals. The signals and types are usually listed in the files /usr/include/signal.h and /usr/include/sys/signal.h. Table B-6 contains a summary of the 31 standard signals.

Table B-6. Unix signals

Signal name

Number[a]

Key[b]

Meaning

SIGHUP

1

Hangup (sent to a process when a modem or network connection is lost)

SIGINT

2

Interrupt (typically generated by Ctrl-C)

SIGQUIT

3

*

Quit

SIGILL

4

*

Illegal instruction; usually caused by executing data

SIGTRAP

5

*

Trace trap

SIGIOT

6

*

I/O trap instruction; used on PDP-11 Unix

SIGEMT

7

*

Emulator trap instruction; used on some computers without floating-point hardware support

SIGFPE

8

*

Floating-point exception

SIGKILL

9

!

Kill

SIGBUS

10

*

Bus error (invalid memory reference, such as an attempt to read a full word on a half-word boundary)

SIGSEGV

11

*

Segmentation violation (invalid memory reference, such as an attempt to read outside a process’s mapped memory)

SIGSYS

12

*

Bad argument to a system call

SIGPIPE

13

Write on a pipe that has no process to read it

SIGALRM

14

Timer alarm

SIGTERM

15

Software termination signal (default kill signal)

SIGURG

16

@

Urgent condition present

SIGSTOP

17

+!

Stop process

SIGTSTP

18

+

Stop signal generated by keyboard

SIGCONT

19

@

Continue after stop

SIGCHLD

20

@

Child process state has changed

SIGTTIN

21

+

Read attempted from control terminal while process is in background

SIGTTOU

22

+

Write attempted to control terminal while process is in background

SIGIO

23

@

Input/output event

SIGXCPU

24

CPU time limit exceeded

SIGXFSZ

25

File size limit exceeded

SIGVTALRM

26

Virtual time alarm

SIGPROF

27

Profiling timer alarm

SIGWINCH

28

@

tty window has changed size

SIGLOST

29

Resource lost

SIGUSR1

30

User-defined signal #1

SIGUSR2

31

User-defined signal #2

[a] The signal number varies on some systems.

[b] The default action for most signals is to terminate.

The symbols in the “Key” column of Table B-6 have the following meanings:

*

If signal is not caught or ignored, generates a core image dump

@

Signal is ignored by default

+

Signal causes process to suspend

!

Signal cannot be caught or ignored

Signals are normally used between processes for process control. They are also used within a process to indicate exceptional conditions that should be handled immediately (for example, floating-point overflows).

Unix Signals and the kill Command

The Unix superuser can use the kill command to terminate any process on the system. One of the most common uses of the kill command is to kill a “runaway” process that is consuming CPU and memory for no apparent reason. You may also want to kill the processes belonging to an intruder.

Despite its name, the kill command can be used for more than simply terminating processes. The kill command can send any signal to any process. Although some signals do indeed result in processes being terminated, others can cause a process to stop, restart, or perform other functions.

The syntax of the kill command is:

kill [-signal] process-IDs

The kill command allows signals to be specified by number or name. To send a hangup to process #1, for example, type:

# kill -HUP 1

With some older versions of Unix, signals could be specified only by number; all versions of the kill command still accept this syntax as well:

# kill -1 1

The superuser can kill any process; other users can kill only their own processes. You can kill many processes at a time by listing all of their PIDs on the command line:

# kill -HUP 1023 3421 3221

By default, kill sends SIGTERM (signal 15), the process-terminate signal.

Killing Multiple Processes at the Same Time

Modern Unix systems allow you to send a signal to multiple processes at the same time with the kill command:

  • If you specify 0 as the PID, the signal is sent to all the processes in your process group.

  • If you specify -1 as a PID and you are not the superuser, the signal is sent to all processes having the same UID as you.

  • If you specify -1 as a PID and you are the superuser, the signal is sent to all processes except system processes, process #1, and yourself.

  • If you specify any other negative value, the signal is sent to all processes in the process group numbered the same as the absolute value of your argument.

Catching Signals

Many signals, including SIGTERM, can be caught by programs. When catching a signal, a programmer has three choices of what to do with the signal:

  • Ignore it.

  • Perform the default action.

  • Execute a program-specified function, often called a signal handler.

Signal handling gives Unix programs a lot of flexibility. For example, some programs catch SIGINT (signal 2), sent when the user types Ctrl-C, to save their temporary files before exiting; other programs perform the default action and simply exit.

There are two signals that cannot be caught: SIGKILL (signal 9) and SIGSTOP (signal 17). SIGKILL terminates a program, no questions asked. SIGSTOP causes a program to stop execution dead in its tracks.

One signal that is very often sent is SIGHUP (signal 1), which simulates a hangup on a modem. Because having a modem accidentally hung up was once a common occurrence, many programs catch SIGHUP and perform a clean shutdown. Standard practice when killing a process is to send signal 1 (hangup) first; if the process does not terminate, then send it signal 15 (software terminate), and finally signal 9 (sure kill).

Many system programs catch SIGHUP and use it as a signal to re-read their configuration files. This has become a common programming convention, particularly in programs that don’t expect to interact with a modem, such as network daemons.

Killing Rogue or Questionable Processes

Sometimes simply killing a rogue process is the wrong thing to do: you can learn more about a process by stopping it and examining it with some of Unix’s debugging tools than by “blowing it out of the water.” Sending a process a SIGSTOP will stop the process but will not destroy the process’s memory image. This will allow you to examine the process using the tools we describe in the next section.