Table of Contents for
The IDA Pro Book, 2nd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition The IDA Pro Book, 2nd Edition by Chris Eagle Published by No Starch Press, 2011
  1. Cover
  2. The IDA Pro Book
  3. PRAISE FOR THE FIRST EDITION OF THE IDA PRO BOOK
  4. Acknowledgments
  5. Introduction
  6. I. Introduction to IDA
  7. 1. Introduction to Disassembly
  8. The What of Disassembly
  9. The Why of Disassembly
  10. The How of Disassembly
  11. Summary
  12. 2. Reversing and Disassembly Tools
  13. Summary Tools
  14. Deep Inspection Tools
  15. Summary
  16. 3. IDA Pro Background
  17. Obtaining IDA Pro
  18. IDA Support Resources
  19. Your IDA Installation
  20. Thoughts on IDA’s User Interface
  21. Summary
  22. II. Basic IDA Usage
  23. 4. Getting Started with IDA
  24. IDA Database Files
  25. Introduction to the IDA Desktop
  26. Desktop Behavior During Initial Analysis
  27. IDA Desktop Tips and Tricks
  28. Reporting Bugs
  29. Summary
  30. 5. IDA Data Displays
  31. Secondary IDA Displays
  32. Tertiary IDA Displays
  33. Summary
  34. 6. Disassembly Navigation
  35. Stack Frames
  36. Searching the Database
  37. Summary
  38. 7. Disassembly Manipulation
  39. Commenting in IDA
  40. Basic Code Transformations
  41. Basic Data Transformations
  42. Summary
  43. 8. Datatypes and Data Structures
  44. Creating IDA Structures
  45. Using Structure Templates
  46. Importing New Structures
  47. Using Standard Structures
  48. IDA TIL Files
  49. C++ Reversing Primer
  50. Summary
  51. 9. Cross-References and Graphing
  52. IDA Graphing
  53. Summary
  54. 10. The Many Faces of IDA
  55. Using IDA’s Batch Mode
  56. Summary
  57. III. Advanced IDA Usage
  58. 11. Customizing IDA
  59. Additional IDA Configuration Options
  60. Summary
  61. 12. Library Recognition Using FLIRT Signatures
  62. Applying FLIRT Signatures
  63. Creating FLIRT Signature Files
  64. Summary
  65. 13. Extending IDA’s Knowledge
  66. Augmenting Predefined Comments with loadint
  67. Summary
  68. 14. Patching Binaries and Other IDA Limitations
  69. IDA Output Files and Patch Generation
  70. Summary
  71. IV. Extending IDA’s Capabilities
  72. 15. IDA Scripting
  73. The IDC Language
  74. Associating IDC Scripts with Hotkeys
  75. Useful IDC Functions
  76. IDC Scripting Examples
  77. IDAPython
  78. IDAPython Scripting Examples
  79. Summary
  80. 16. The IDA Software Development Kit
  81. The IDA Application Programming Interface
  82. Summary
  83. 17. The IDA Plug-in Architecture
  84. Building Your Plug-ins
  85. Installing Plug-ins
  86. Configuring Plug-ins
  87. Extending IDC
  88. Plug-in User Interface Options
  89. Scripted Plug-ins
  90. Summary
  91. 18. Binary Files and IDA Loader Modules
  92. Manually Loading a Windows PE File
  93. IDA Loader Modules
  94. Writing an IDA Loader Using the SDK
  95. Alternative Loader Strategies
  96. Writing a Scripted Loader
  97. Summary
  98. 19. IDA Processor Modules
  99. The Python Interpreter
  100. Writing a Processor Module Using the SDK
  101. Building Processor Modules
  102. Customizing Existing Processors
  103. Processor Module Architecture
  104. Scripting a Processor Module
  105. Summary
  106. V. Real-World Applications
  107. 20. Compiler Personalities
  108. RTTI Implementations
  109. Locating main
  110. Debug vs. Release Binaries
  111. Alternative Calling Conventions
  112. Summary
  113. 21. Obfuscated Code Analysis
  114. Anti–Dynamic Analysis Techniques
  115. Static De-obfuscation of Binaries Using IDA
  116. Virtual Machine-Based Obfuscation
  117. Summary
  118. 22. Vulnerability Analysis
  119. After-the-Fact Vulnerability Discovery with IDA
  120. IDA and the Exploit-Development Process
  121. Analyzing Shellcode
  122. Summary
  123. 23. Real-World IDA Plug-ins
  124. IDAPython
  125. collabREate
  126. ida-x86emu
  127. Class Informer
  128. MyNav
  129. IdaPdf
  130. Summary
  131. VI. The IDA Debugger
  132. 24. The IDA Debugger
  133. Basic Debugger Displays
  134. Process Control
  135. Automating Debugger Tasks
  136. Summary
  137. 25. Disassembler/Debugger Integration
  138. IDA Databases and the IDA Debugger
  139. Debugging Obfuscated Code
  140. IdaStealth
  141. Dealing with Exceptions
  142. Summary
  143. 26. Additional Debugger Features
  144. Debugging with Bochs
  145. Appcall
  146. Summary
  147. A. Using IDA Freeware 5.0
  148. Using IDA Freeware
  149. B. IDC/SDK Cross-Reference
  150. Index
  151. About the Author

IDA Databases and the IDA Debugger

It is important that we begin with an understanding of how the debugger treats your database when you initiate (and terminate) a debugging session. A debugger needs a process image to work with. Debuggers obtain process images either by attaching to existing processes or by creating new processes from executable files. An IDA database does not contain a valid process image, nor in most cases can a valid process image be reconstructed from a database (if one could, then File ▸ Produce File ▸ Create EXE File might be simple to implement). When you launch a debugger session from IDA, the disassembler side informs the debugger side of the name of the original input file, which the debugger uses to create and attach to a new process. Information provided to the debugger includes disassembly formatting, symbol names, data formatting, and any comments that you have entered into the database. An important point to understand is that any patches (changes in byte content) you have applied to your database will not be reflected in the process being debugged. In other words, it is not possible to patch changes into the database and expect to observe the effect of those changes when you launch the debugger.

The opposite holds true as well. When you have finished debugging a process and you return to disassembly mode, by default the only changes that will be reflected in the database are cosmetic in nature (such as renamed variables or functions). Any memory changes, such as self-modified code, are not pulled back into the database for you to analyze. If you wish to migrate any content, such as newly de-obfuscated code, from the debugger back to your disassembly database, IDA will allow you to do so via the Debugger ▸ Take Memory Snapshot command. The resulting confirmation dialog is shown in Figure 25-1.

Memory snapshot confirmation dialog

Figure 25-1. Memory snapshot confirmation dialog

The default option is to copy loader segments from the running process to the database. Loader segments are those segments that were loaded into the database by the IDA loader module used to create the current database. In the case of an obfuscated program, one or more of these segments probably contain data that has been obfuscated and are therefore nearly impossible to analyze in the disassembler. These are precisely the segments that you will want to copy back from the running process image in order to take advantage of the de-obfuscation work performed by the process running under debugger control.

Selecting All segments causes all segments created by the debugger to be copied back to the database. These segments include the contents of all shared libraries loaded in support of the process as well as additional process-related segments, such as the stack and heap contents.

When the debugger is used to attach to an existing process with no associated database, none of the debugger segments will be flagged as loader segments because the file was not loaded by one of IDA’s loaders. In such cases, you may elect to capture all available segments into a new database. Alternatively, you may elect to edit segment attributes and designate one or more segments as loader segments. Segment attributes may be edited by first opening the Segments window (View ▸ Open Subviews ▸ Segments). Any segment marked as a loader segment will contain an L in the L column of the Program Segmentation window. Right-clicking a segment of interest and selecting Edit Segment opens the segment attributes dialog shown in Figure 25-2.

Segment editing dialog with the Loader segment checkbox

Figure 25-2. Segment editing dialog with the Loader segment checkbox

Selecting the Loader segment checkbox marks the segment as a loader segment and allows it to be copied into the database along with all other loader segments.

The segment attributes dialog is also useful when you have created a process from an open database and wish to add additional loader segments before taking a memory snapshot. For example, if an obfuscated process extracts the original code into a block of memory allocated in the heap (or a memory-mapped block), you will want to mark that memory block as a loader segment before you snapshot memory; otherwise, the de-obfuscated code will not be copied back into your database.