Table of Contents for
The IDA Pro Book, 2nd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition The IDA Pro Book, 2nd Edition by Chris Eagle Published by No Starch Press, 2011
  1. Cover
  2. The IDA Pro Book
  3. PRAISE FOR THE FIRST EDITION OF THE IDA PRO BOOK
  4. Acknowledgments
  5. Introduction
  6. I. Introduction to IDA
  7. 1. Introduction to Disassembly
  8. The What of Disassembly
  9. The Why of Disassembly
  10. The How of Disassembly
  11. Summary
  12. 2. Reversing and Disassembly Tools
  13. Summary Tools
  14. Deep Inspection Tools
  15. Summary
  16. 3. IDA Pro Background
  17. Obtaining IDA Pro
  18. IDA Support Resources
  19. Your IDA Installation
  20. Thoughts on IDA’s User Interface
  21. Summary
  22. II. Basic IDA Usage
  23. 4. Getting Started with IDA
  24. IDA Database Files
  25. Introduction to the IDA Desktop
  26. Desktop Behavior During Initial Analysis
  27. IDA Desktop Tips and Tricks
  28. Reporting Bugs
  29. Summary
  30. 5. IDA Data Displays
  31. Secondary IDA Displays
  32. Tertiary IDA Displays
  33. Summary
  34. 6. Disassembly Navigation
  35. Stack Frames
  36. Searching the Database
  37. Summary
  38. 7. Disassembly Manipulation
  39. Commenting in IDA
  40. Basic Code Transformations
  41. Basic Data Transformations
  42. Summary
  43. 8. Datatypes and Data Structures
  44. Creating IDA Structures
  45. Using Structure Templates
  46. Importing New Structures
  47. Using Standard Structures
  48. IDA TIL Files
  49. C++ Reversing Primer
  50. Summary
  51. 9. Cross-References and Graphing
  52. IDA Graphing
  53. Summary
  54. 10. The Many Faces of IDA
  55. Using IDA’s Batch Mode
  56. Summary
  57. III. Advanced IDA Usage
  58. 11. Customizing IDA
  59. Additional IDA Configuration Options
  60. Summary
  61. 12. Library Recognition Using FLIRT Signatures
  62. Applying FLIRT Signatures
  63. Creating FLIRT Signature Files
  64. Summary
  65. 13. Extending IDA’s Knowledge
  66. Augmenting Predefined Comments with loadint
  67. Summary
  68. 14. Patching Binaries and Other IDA Limitations
  69. IDA Output Files and Patch Generation
  70. Summary
  71. IV. Extending IDA’s Capabilities
  72. 15. IDA Scripting
  73. The IDC Language
  74. Associating IDC Scripts with Hotkeys
  75. Useful IDC Functions
  76. IDC Scripting Examples
  77. IDAPython
  78. IDAPython Scripting Examples
  79. Summary
  80. 16. The IDA Software Development Kit
  81. The IDA Application Programming Interface
  82. Summary
  83. 17. The IDA Plug-in Architecture
  84. Building Your Plug-ins
  85. Installing Plug-ins
  86. Configuring Plug-ins
  87. Extending IDC
  88. Plug-in User Interface Options
  89. Scripted Plug-ins
  90. Summary
  91. 18. Binary Files and IDA Loader Modules
  92. Manually Loading a Windows PE File
  93. IDA Loader Modules
  94. Writing an IDA Loader Using the SDK
  95. Alternative Loader Strategies
  96. Writing a Scripted Loader
  97. Summary
  98. 19. IDA Processor Modules
  99. The Python Interpreter
  100. Writing a Processor Module Using the SDK
  101. Building Processor Modules
  102. Customizing Existing Processors
  103. Processor Module Architecture
  104. Scripting a Processor Module
  105. Summary
  106. V. Real-World Applications
  107. 20. Compiler Personalities
  108. RTTI Implementations
  109. Locating main
  110. Debug vs. Release Binaries
  111. Alternative Calling Conventions
  112. Summary
  113. 21. Obfuscated Code Analysis
  114. Anti–Dynamic Analysis Techniques
  115. Static De-obfuscation of Binaries Using IDA
  116. Virtual Machine-Based Obfuscation
  117. Summary
  118. 22. Vulnerability Analysis
  119. After-the-Fact Vulnerability Discovery with IDA
  120. IDA and the Exploit-Development Process
  121. Analyzing Shellcode
  122. Summary
  123. 23. Real-World IDA Plug-ins
  124. IDAPython
  125. collabREate
  126. ida-x86emu
  127. Class Informer
  128. MyNav
  129. IdaPdf
  130. Summary
  131. VI. The IDA Debugger
  132. 24. The IDA Debugger
  133. Basic Debugger Displays
  134. Process Control
  135. Automating Debugger Tasks
  136. Summary
  137. 25. Disassembler/Debugger Integration
  138. IDA Databases and the IDA Debugger
  139. Debugging Obfuscated Code
  140. IdaStealth
  141. Dealing with Exceptions
  142. Summary
  143. 26. Additional Debugger Features
  144. Debugging with Bochs
  145. Appcall
  146. Summary
  147. A. Using IDA Freeware 5.0
  148. Using IDA Freeware
  149. B. IDC/SDK Cross-Reference
  150. Index
  151. About the Author

Additional IDA Configuration Options

IDA has a tremendous number of additional options that must be configured through the IDA user interface. Options for formatting individual disassembly lines were discussed in Chapter 7. Additional IDA options are accessed via the Options menu, and in most cases, any options that you modify apply only to the currently opened database. Values for those options are stored in the associated database file when the database is closed. IDA’s Color (Options ▸ Colors) and Font (Options ▸ Font) options are two of the exceptions to this rule in that they are global options that, once set, remain in effect in all future IDA sessions. For Windows versions of IDA, option values are stored in the Windows registry under the HKEY_CURRENT_USER\Software\Hex-Rays\IDA registry key. For non-Windows versions of IDA, these values are stored in your home directory in a proprietary format file named $HOME/.idapro/ida.reg.

Another piece of information that is saved in the registry concerns dialogs for which you may choose the Do not display this dialog box again option. This message occasionally appears in the form of a checkbox in the lower-right portion of some informational message dialogs that you may not wish to see in the future. Should you select this option, a registry value is created under the HKEY_CURRENT_USER\Software\Hex-Rays\IDA\Hidden Messages registry key. If, at a later time, you wish to have a hidden dialog displayed once again, you will need to delete the appropriate value under this registry key.

IDA Colors

The color of virtually every item in an IDA display can be customized via the Options ▸ Colors dialog shown in Figure 11-1.

The color selection dialog

Figure 11-1. The color selection dialog

The Disassembly tab controls the colors used for various parts of each line in the disassembly window. Examples of each type of text that can appear in a disassembly are given in the example window . When you select an item in the example window, the item’s type is listed at . Using the Change Color button, you may assign any color you wish to any item you wish.

The color selection dialog contains tabs for assigning colors used in the navigation band, the debugger, the jump arrows in the left margin of the text disassembly view, and various components in the graph view. Specifically, the Graph tab controls the coloring of graph nodes, their title bars, and the edges that connect each node, while the Disassembly tab controls the coloring of disassembled text in the graph view. The Misc tab allows for customizing the colors used in IDA’s message window.

Customizing IDA Toolbars

In addition to menus and hotkeys, the GUI version of IDA offers a large number of toolbar buttons spread across more than two dozen toolbars. Toolbars are typically docked in the main toolbar area beneath IDA’s menu bar. Two predefined toolbar arrangements accessible using the View ▸ Toolbars menu are Basic mode, which enables seven of IDA’s toolbars, and Advanced mode, which enables every IDA toolbar. Individual toolbars can be detached, dragged, and relocated to any location on the screen to suit your personal taste. If you find that you have no need for a particular toolbar, you can remove it from the display entirely via the View ▸ Toolbars menu, which is shown in Figure 11-2.

This menu also appears if you right-click anywhere within the docking area of the IDA display. Turning off the Main toolbar removes all toolbars from the docking area and is useful if you need to maximize the amount of screen space dedicated to the disassembly window. Any changes that you make to your toolbar arrangement are stored with the current database. Opening a second database will restore the toolbars to the arrangement that was in effect when the second database was last saved. Opening a new binary to create a new database restores the toolbar arrangement based on IDA’s current default toolbar settings.

The toolbar configuration menu

Figure 11-2. The toolbar configuration menu

If you settle on a toolbar arrangement that you happen to like and wish to make it the default, then you should save the current desktop arrangement as your default desktop using Windows ▸ Save Desktop, which opens the dialog shown in Figure 11-3.

The Save Disassembly Desktop dialog

Figure 11-3. The Save Disassembly Desktop dialog

Each time you save a desktop configuration, you are asked to supply a name for the configuration. When the Default checkbox is selected, the current desktop layout becomes the default for all new databases and the desktop to which you will revert if you choose Windows ▸ Reset desktop. To restore the display to one of your custom desktops, select WindowsLoad Desktop and choose the named layout that you wish to load. Saving and restoring desktops is particularly useful in situations that involve using multiple monitors with different sizes and/or resolutions (which may be common with laptops using different docking stations or when connecting to projectors for presentations).