Table of Contents for
The IDA Pro Book, 2nd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition The IDA Pro Book, 2nd Edition by Chris Eagle Published by No Starch Press, 2011
  1. Cover
  2. The IDA Pro Book
  3. PRAISE FOR THE FIRST EDITION OF THE IDA PRO BOOK
  4. Acknowledgments
  5. Introduction
  6. I. Introduction to IDA
  7. 1. Introduction to Disassembly
  8. The What of Disassembly
  9. The Why of Disassembly
  10. The How of Disassembly
  11. Summary
  12. 2. Reversing and Disassembly Tools
  13. Summary Tools
  14. Deep Inspection Tools
  15. Summary
  16. 3. IDA Pro Background
  17. Obtaining IDA Pro
  18. IDA Support Resources
  19. Your IDA Installation
  20. Thoughts on IDA’s User Interface
  21. Summary
  22. II. Basic IDA Usage
  23. 4. Getting Started with IDA
  24. IDA Database Files
  25. Introduction to the IDA Desktop
  26. Desktop Behavior During Initial Analysis
  27. IDA Desktop Tips and Tricks
  28. Reporting Bugs
  29. Summary
  30. 5. IDA Data Displays
  31. Secondary IDA Displays
  32. Tertiary IDA Displays
  33. Summary
  34. 6. Disassembly Navigation
  35. Stack Frames
  36. Searching the Database
  37. Summary
  38. 7. Disassembly Manipulation
  39. Commenting in IDA
  40. Basic Code Transformations
  41. Basic Data Transformations
  42. Summary
  43. 8. Datatypes and Data Structures
  44. Creating IDA Structures
  45. Using Structure Templates
  46. Importing New Structures
  47. Using Standard Structures
  48. IDA TIL Files
  49. C++ Reversing Primer
  50. Summary
  51. 9. Cross-References and Graphing
  52. IDA Graphing
  53. Summary
  54. 10. The Many Faces of IDA
  55. Using IDA’s Batch Mode
  56. Summary
  57. III. Advanced IDA Usage
  58. 11. Customizing IDA
  59. Additional IDA Configuration Options
  60. Summary
  61. 12. Library Recognition Using FLIRT Signatures
  62. Applying FLIRT Signatures
  63. Creating FLIRT Signature Files
  64. Summary
  65. 13. Extending IDA’s Knowledge
  66. Augmenting Predefined Comments with loadint
  67. Summary
  68. 14. Patching Binaries and Other IDA Limitations
  69. IDA Output Files and Patch Generation
  70. Summary
  71. IV. Extending IDA’s Capabilities
  72. 15. IDA Scripting
  73. The IDC Language
  74. Associating IDC Scripts with Hotkeys
  75. Useful IDC Functions
  76. IDC Scripting Examples
  77. IDAPython
  78. IDAPython Scripting Examples
  79. Summary
  80. 16. The IDA Software Development Kit
  81. The IDA Application Programming Interface
  82. Summary
  83. 17. The IDA Plug-in Architecture
  84. Building Your Plug-ins
  85. Installing Plug-ins
  86. Configuring Plug-ins
  87. Extending IDC
  88. Plug-in User Interface Options
  89. Scripted Plug-ins
  90. Summary
  91. 18. Binary Files and IDA Loader Modules
  92. Manually Loading a Windows PE File
  93. IDA Loader Modules
  94. Writing an IDA Loader Using the SDK
  95. Alternative Loader Strategies
  96. Writing a Scripted Loader
  97. Summary
  98. 19. IDA Processor Modules
  99. The Python Interpreter
  100. Writing a Processor Module Using the SDK
  101. Building Processor Modules
  102. Customizing Existing Processors
  103. Processor Module Architecture
  104. Scripting a Processor Module
  105. Summary
  106. V. Real-World Applications
  107. 20. Compiler Personalities
  108. RTTI Implementations
  109. Locating main
  110. Debug vs. Release Binaries
  111. Alternative Calling Conventions
  112. Summary
  113. 21. Obfuscated Code Analysis
  114. Anti–Dynamic Analysis Techniques
  115. Static De-obfuscation of Binaries Using IDA
  116. Virtual Machine-Based Obfuscation
  117. Summary
  118. 22. Vulnerability Analysis
  119. After-the-Fact Vulnerability Discovery with IDA
  120. IDA and the Exploit-Development Process
  121. Analyzing Shellcode
  122. Summary
  123. 23. Real-World IDA Plug-ins
  124. IDAPython
  125. collabREate
  126. ida-x86emu
  127. Class Informer
  128. MyNav
  129. IdaPdf
  130. Summary
  131. VI. The IDA Debugger
  132. 24. The IDA Debugger
  133. Basic Debugger Displays
  134. Process Control
  135. Automating Debugger Tasks
  136. Summary
  137. 25. Disassembler/Debugger Integration
  138. IDA Databases and the IDA Debugger
  139. Debugging Obfuscated Code
  140. IdaStealth
  141. Dealing with Exceptions
  142. Summary
  143. 26. Additional Debugger Features
  144. Debugging with Bochs
  145. Appcall
  146. Summary
  147. A. Using IDA Freeware 5.0
  148. Using IDA Freeware
  149. B. IDC/SDK Cross-Reference
  150. Index
  151. About the Author

Importing New Structures

After working with IDA’s structure-creation and editing features for a while, you may find yourself longing for an easier way to do things. Fortunately, IDA does offer some shortcuts concerning new structures. IDA is capable of parsing individual C (not C++) data declarations, as well as entire C header files, and automatically building IDA structure representations for any structures defined in those declarations or header files. If you happen to have the source code, or at least the header files, for the binary that you are reversing, then you can save a lot of time by having IDA extract related structures directly from the source code.

Parsing C Structure Declarations

A Local Types subview window is available by using the View ▸ OpenSubviews ▸ Local Types command. The Local Types window displays a list of all types that have been parsed into the current database. For new databases, the Local Types window is initially empty, but the window offers the capability to parse new types via the insert key or the Insert option from the context menu. The resulting type entry dialog is shown in Figure 8-11.

The Local Types entry dialog

Figure 8-11. The Local Types entry dialog

Errors encountered while parsing the new type are displayed in the IDA output window. If the type declaration is successfully parsed, the type and its associated declaration are listed in the Local Types window, as shown in Figure 8-12.

The Local Types window

Figure 8-12. The Local Types window

Note that the IDA parser utilizes a default structure member alignment of 4 bytes. If your structure requires an alternate alignment, you may include it, and IDA will recognize a pragma pack directive to specify the desired member alignment.

Datatypes added to the Local Types windows are not immediately available via the Structures window. There are two methods for adding local type declarations to the Structures window. The easiest method is to right-click on the desired local type and select Synchronize to idb. Alternatively, as each new type is added to a list of standard structures; the new type may be imported into the Structures window as described in Using Standard Structures in Using Standard Structures.

Parsing C Header Files

To parse a header file, use FileLoad FileParse C Header File to choose the header you wish to parse. If all goes well, IDA returns the message: Compilation successful. If the parser encounters any problems, you are notified that there were errors. Any associated error messages are displayed in the IDA output window.

IDA adds all structures that were successfully parsed to both the list of local types and the list of standard structures (to the end of the list to be exact) available in the current database. When a new structure has the same name as an existing structure, the existing structure definition is overwritten with the new structure layout. None of the new structures appear in the Structures window until you elect to explicitly add them, as described above for local types or in Using Standard Structures in Using Standard Structures.

When parsing C header files, it is useful to keep the following points in mind:

  • The built-in parser does not necessarily use the same default structure member alignment as your compiler, though it does honor the pack pragma. By default, the parser creates structures that are 4-byte aligned.

  • The parser understands the C preprocessor include directive. To resolve include directives, the parser searches the directory containing the file being parsed as well as any directories listed as Include directories in the Options ▸ Compiler configuration dialog.

  • The parser understands only C standard datatypes. However, the parser also understands the preprocessor define directive as well as the C typedef statement. Thus, types such as uint32_t will be correctly parsed if the parser has encountered an appropriate typedef prior to their use.

  • When you don’t have any source code, you may find it easier to quickly define a structure layout in C notation using a text editor and parse the resulting header file or paste the declaration as a new local type, rather than using IDA’s cumbersome manual structure-definition tools.

  • New structures are available only in the current database. You must repeat the structure-creation steps in each additional database for which you wish to use the structures. We will discuss some steps for simplifying this process when we discuss TIL files later in the chapter.

In general, to maximize your chances of successfully parsing a header file, you will want to simplify your structure definitions as much as possible through the use of standard C datatypes and minimizing the use of include files. Remember, the most important thing about creating structures in IDA is to ensure that the layout is correct. Correct layout depends far more on the correct size of each field and the correct alignment of the structure than getting the exact type of each field just right. In other words, if you need to replace all occurrences of uint32_t with int in order to get a file to parse correctly, you should go right ahead and do it.