Table of Contents for
The IDA Pro Book, 2nd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition The IDA Pro Book, 2nd Edition by Chris Eagle Published by No Starch Press, 2011
  1. Cover
  2. The IDA Pro Book
  3. PRAISE FOR THE FIRST EDITION OF THE IDA PRO BOOK
  4. Acknowledgments
  5. Introduction
  6. I. Introduction to IDA
  7. 1. Introduction to Disassembly
  8. The What of Disassembly
  9. The Why of Disassembly
  10. The How of Disassembly
  11. Summary
  12. 2. Reversing and Disassembly Tools
  13. Summary Tools
  14. Deep Inspection Tools
  15. Summary
  16. 3. IDA Pro Background
  17. Obtaining IDA Pro
  18. IDA Support Resources
  19. Your IDA Installation
  20. Thoughts on IDA’s User Interface
  21. Summary
  22. II. Basic IDA Usage
  23. 4. Getting Started with IDA
  24. IDA Database Files
  25. Introduction to the IDA Desktop
  26. Desktop Behavior During Initial Analysis
  27. IDA Desktop Tips and Tricks
  28. Reporting Bugs
  29. Summary
  30. 5. IDA Data Displays
  31. Secondary IDA Displays
  32. Tertiary IDA Displays
  33. Summary
  34. 6. Disassembly Navigation
  35. Stack Frames
  36. Searching the Database
  37. Summary
  38. 7. Disassembly Manipulation
  39. Commenting in IDA
  40. Basic Code Transformations
  41. Basic Data Transformations
  42. Summary
  43. 8. Datatypes and Data Structures
  44. Creating IDA Structures
  45. Using Structure Templates
  46. Importing New Structures
  47. Using Standard Structures
  48. IDA TIL Files
  49. C++ Reversing Primer
  50. Summary
  51. 9. Cross-References and Graphing
  52. IDA Graphing
  53. Summary
  54. 10. The Many Faces of IDA
  55. Using IDA’s Batch Mode
  56. Summary
  57. III. Advanced IDA Usage
  58. 11. Customizing IDA
  59. Additional IDA Configuration Options
  60. Summary
  61. 12. Library Recognition Using FLIRT Signatures
  62. Applying FLIRT Signatures
  63. Creating FLIRT Signature Files
  64. Summary
  65. 13. Extending IDA’s Knowledge
  66. Augmenting Predefined Comments with loadint
  67. Summary
  68. 14. Patching Binaries and Other IDA Limitations
  69. IDA Output Files and Patch Generation
  70. Summary
  71. IV. Extending IDA’s Capabilities
  72. 15. IDA Scripting
  73. The IDC Language
  74. Associating IDC Scripts with Hotkeys
  75. Useful IDC Functions
  76. IDC Scripting Examples
  77. IDAPython
  78. IDAPython Scripting Examples
  79. Summary
  80. 16. The IDA Software Development Kit
  81. The IDA Application Programming Interface
  82. Summary
  83. 17. The IDA Plug-in Architecture
  84. Building Your Plug-ins
  85. Installing Plug-ins
  86. Configuring Plug-ins
  87. Extending IDC
  88. Plug-in User Interface Options
  89. Scripted Plug-ins
  90. Summary
  91. 18. Binary Files and IDA Loader Modules
  92. Manually Loading a Windows PE File
  93. IDA Loader Modules
  94. Writing an IDA Loader Using the SDK
  95. Alternative Loader Strategies
  96. Writing a Scripted Loader
  97. Summary
  98. 19. IDA Processor Modules
  99. The Python Interpreter
  100. Writing a Processor Module Using the SDK
  101. Building Processor Modules
  102. Customizing Existing Processors
  103. Processor Module Architecture
  104. Scripting a Processor Module
  105. Summary
  106. V. Real-World Applications
  107. 20. Compiler Personalities
  108. RTTI Implementations
  109. Locating main
  110. Debug vs. Release Binaries
  111. Alternative Calling Conventions
  112. Summary
  113. 21. Obfuscated Code Analysis
  114. Anti–Dynamic Analysis Techniques
  115. Static De-obfuscation of Binaries Using IDA
  116. Virtual Machine-Based Obfuscation
  117. Summary
  118. 22. Vulnerability Analysis
  119. After-the-Fact Vulnerability Discovery with IDA
  120. IDA and the Exploit-Development Process
  121. Analyzing Shellcode
  122. Summary
  123. 23. Real-World IDA Plug-ins
  124. IDAPython
  125. collabREate
  126. ida-x86emu
  127. Class Informer
  128. MyNav
  129. IdaPdf
  130. Summary
  131. VI. The IDA Debugger
  132. 24. The IDA Debugger
  133. Basic Debugger Displays
  134. Process Control
  135. Automating Debugger Tasks
  136. Summary
  137. 25. Disassembler/Debugger Integration
  138. IDA Databases and the IDA Debugger
  139. Debugging Obfuscated Code
  140. IdaStealth
  141. Dealing with Exceptions
  142. Summary
  143. 26. Additional Debugger Features
  144. Debugging with Bochs
  145. Appcall
  146. Summary
  147. A. Using IDA Freeware 5.0
  148. Using IDA Freeware
  149. B. IDC/SDK Cross-Reference
  150. Index
  151. About the Author

Configuring Plug-ins

IDA provides a limited ability to configure plug-ins via settings in <IDADIR>/plugins/plugins.cfg. Settings in plugins.cfg can be used to specify the following information about a plug-in:

  • An alternate menu description for the plug-in. This value overrides the plug-in’s wanted_name data member.

  • A nonstandard location or file extension for the plug-in. By default IDA searches for plug-ins in <IDADIR>/plugins and expects plug-ins to have a default, platform-specific file extension.

  • An alternate or additional hotkey used to activate the plug-in. This value overrides the plug-in’s wanted_hotkey data member.

  • An integer value to be passed to the plug-in’s PLUGIN.run function each time the plug-in is activated.

  • An optional DEBUG flag for use with debugger plug-ins. Debugger plug-ins are discussed in Chapter 24.

The syntax of a valid plug-in configuration line is described in plugins.cfg. A few examples of plug-in configuration lines are shown here:

; Semicolons introduce comments.  A plugin configuration line consists
; of three required components and two optional components
;  plugin_name  plugin_file  hotkey  [integer run arg]  [DEBUG]
The_IdaBook_Plugin   idabook_plugin   Alt-F2  1
IdaBook_Plugin_Alt   idabook_plugin   Alt-F3  2

The wanted_name and wanted_hotkey data members for a plug-in are chosen by the plug-in’s author and compiled into the plug-in. It is entirely possible that two plug-ins developed by different authors may have identical names or identical hotkey associations. Within plugin.cfg, the plugin_name field specifies the text (which overrides PLUGIN.wanted_name) to be added to the Edit ▸ Plugins menu. It is possible to assign several names—and therefore several menu items—to a single plug-in. Underscore characters in the plugin_name field are replaced with space characters before the name is added to the Edit ▸ Plugins menu.

The plugin_file field specifies the name of the compiled plug-in module file to which the current configuration line applies. If a full path is specified, IDA loads the plug-in from the specified path. If no path is specified, IDA looks for the plug-in in <IDADIR>/plugins. If no file extension is specified, then IDA assumes a default plug-in extension for the current platform. If a file extension is specified, IDA searches for an exact match to the plug-in filename.

The hotkey field specifies the hotkey that should be used to activate the plug-in. This field overrides the value of PLUGIN.wanted_hotkey and can be used to resolve conflicting hotkey assignments when two plug-ins have been built that use the same hotkey for activation. Alternatively, assigning more than one hotkey to a plug-in offers the ability to activate a plug-in in more than one way. In such cases, it is useful to specify unique integer arguments for PLUGIN.run depending on which hotkey was used to activate a plug-in. When you pass different integer values to PLUGIN.run, IDA makes it possible for a plug-in to determine exactly how it was activated. This capability is useful when a plug-in implements more than one behavior and each behavior is selected based on how the plug-in is activated. In the preceding configuration example, IDA passes the integer value 2 to idabook_plugin’s PLUGIN.run function whenever the plug-in is activated via the alt-F3 hotkey sequence.