Table of Contents for
System Forensics, Investigation, and Response, 3rd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition System Forensics, Investigation, and Response, 3rd Edition by Easttom Published by Jones & Bartlett Learning, 2017
  1. Cover Page
  2. Contents
  3. System Forensics, Investigation, and Response
  4. Title Page
  5. Copyright Page
  6. Content
  7. Preface
  8. About the Author
  9. PART I Introduction to Forensics
  10. CHAPTER 1 Introduction to Forensics
  11. What Is Computer Forensics?
  12. Understanding the Field of Digital Forensics
  13. Knowledge Needed for Computer Forensics Analysis
  14. The Daubert Standard
  15. U.S. Laws Affecting Digital Forensics
  16. Federal Guidelines
  17. CHAPTER SUMMARY
  18. KEY CONCEPTS AND TERMS
  19. CHAPTER 1 ASSESSMENT
  20. CHAPTER 2 Overview of Computer Crime
  21. How Computer Crime Affects Forensics
  22. Identity Theft
  23. Hacking
  24. Cyberstalking and Harassment
  25. Fraud
  26. Non-Access Computer Crimes
  27. Cyberterrorism
  28. CHAPTER SUMMARY
  29. KEY CONCEPTS AND TERMS
  30. CHAPTER 2 ASSESSMENT
  31. CHAPTER 3 Forensic Methods and Labs
  32. Forensic Methodologies
  33. Formal Forensic Approaches
  34. Documentation of Methodologies and Findings
  35. Evidence-Handling Tasks
  36. How to Set Up a Forensic Lab
  37. Common Forensic Software Programs
  38. Forensic Certifications
  39. CHAPTER SUMMARY
  40. KEY CONCEPTS AND TERMS
  41. CHAPTER 3 ASSESSMENT
  42. PART II Technical Overview: SystemForensics Tools, Techniques, and Methods
  43. CHAPTER 4 Collecting, Seizing, and Protecting Evidence
  44. Proper Procedure
  45. Handling Evidence
  46. Storage Formats
  47. Forensic Imaging
  48. RAID Acquisitions
  49. CHAPTER SUMMARY
  50. KEY CONCEPTS AND TERMS
  51. CHAPTER 4 ASSESSMENT
  52. CHAPTER LAB
  53. CHAPTER 5 Understanding Techniques for Hiding and Scrambling Information
  54. Steganography
  55. Encryption
  56. CHAPTER SUMMARY
  57. KEY CONCEPTS AND TERMS
  58. CHAPTER 5 ASSESSMENT
  59. CHAPTER 6 Recovering Data
  60. Undeleting Data
  61. Recovering Information from Damaged Media
  62. File Carving
  63. CHAPTER SUMMARY
  64. KEY CONCEPTS AND TERMS
  65. CHAPTER 6 ASSESSMENT
  66. CHAPTER 7 Email Forensics
  67. How Email Works
  68. Email Protocols
  69. Email Headers
  70. Tracing Email
  71. Email Server Forensics
  72. Email and the Law
  73. CHAPTER SUMMARY
  74. KEY CONCEPTS AND TERMS
  75. CHAPTER 7 ASSESSMENT
  76. CHAPTER 8 Windows Forensics
  77. Windows Details
  78. Volatile Data
  79. Windows Swap File
  80. Windows Logs
  81. Windows Directories
  82. Index.dat
  83. Windows Files and Permissions
  84. The Registry
  85. Volume Shadow Copy
  86. Memory Forensics
  87. CHAPTER SUMMARY
  88. KEY CONCEPTS AND TERMS
  89. CHAPTER 8 ASSESSMENT
  90. CHAPTER 9 Linux Forensics
  91. Linux and Forensics
  92. Linux Basics
  93. Linux File Systems
  94. Linux Logs
  95. Linux Directories
  96. Shell Commands for Forensics
  97. Kali Linux Forensics
  98. Forensics Tools for Linux
  99. CHAPTER SUMMARY
  100. KEY CONCEPTS AND TERMS
  101. CHAPTER 9 ASSESSMENT
  102. CHAPTER 10 Macintosh Forensics
  103. Mac Basics
  104. Macintosh Logs
  105. Directories
  106. Macintosh Forensic Techniques
  107. How to Examine a Mac
  108. Can You Undelete in Mac?
  109. CHAPTER SUMMARY
  110. KEY CONCEPTS AND TERMS
  111. CHAPTER 10 ASSESSMENT
  112. CHAPTER 11 Mobile Forensics
  113. Cellular Device Concepts
  114. What Evidence You Can Get from a Cell Phone
  115. Seizing Evidence from a Mobile Device
  116. JTAG
  117. CHAPTER SUMMARY
  118. KEY CONCEPTS AND TERMS
  119. CHAPTER 11 ASSESSMENT
  120. CHAPTER 12 Performing Network Analysis
  121. Network Packet Analysis
  122. Network Traffic Analysis
  123. Router Forensics
  124. Firewall Forensics
  125. CHAPTER SUMMARY
  126. KEY CONCEPTS AND TERMS
  127. CHAPTER 12 ASSESSMENT
  128. PART III Incident Response and Resources
  129. CHAPTER 13 Incident and Intrusion Response
  130. Disaster Recovery
  131. Preserving Evidence
  132. Adding Forensics to Incident Response
  133. CHAPTER SUMMARY
  134. KEY CONCEPTS AND TERMS
  135. CHAPTER 13 ASSESSMENT
  136. CHAPTER 14 Trends and Future Directions
  137. Technical Trends
  138. Legal and Procedural Trends
  139. CHAPTER SUMMARY
  140. KEY CONCEPTS AND TERMS
  141. CHAPTER 14 ASSESSMENT
  142. CHAPTER 15 System Forensics Resources
  143. Tools to Use
  144. Resources
  145. Laws
  146. CHAPTER SUMMARY
  147. KEY CONCEPTS AND TERMS
  148. CHAPTER 15 ASSESSMENT
  149. APPENDIX A Answer Key
  150. APPENDIX B Standard Acronyms
  151. Glossary of Key Terms
  152. References
  153. Index

Preserving Evidence

An event is any observable occurrence within a system or network. This includes any activity on the network, such as when a user accesses files on a server or when a firewall blocks network traffic. Adverse events are events with negative results or negative consequences. Attacks on systems are adverse events. Adverse events discussed here are events that are computer-security related. They are not events caused by sources such as natural disasters and power failures. A computer security incident is any event that violates an organization’s security policies. This includes computer security policies, acceptable use policies, or standard security practices. The following are examples of computer security incidents:

  • Denial of service (DoS) attacks—A DoS attack could result from an attacker sending specially crafted packets to a web server that cause it to crash. It could also result from an attacker directing hundreds of compromised external workstations to send many Internet Control Message Protocol (ICMP) requests to an organization’s network. When the attack comes simultaneously from multiple coordinated sources, it is referred to as a distributed DoS (DDoS) attack.

  • Malicious code—Malicious software, or malware, is any malicious code, such as viruses, worms, and Trojans. For example, a worm uses open file shares to quickly infect hundreds of systems in an organization. An employee may innocently introduce viruses into a network from his or her home computer on a USB thumb drive. When the employee plugs the USB drive into the work computer, the virus infects the work computer and, subsequently, can infect the entire work network.

  • Unauthorized access—This includes any time someone accesses files he or she is not specifically authorized to access. The person gaining access can be someone within the organization, such as an employee or contractor, or an external attacker. If shared files are not locked down with appropriate permissions, users may stumble upon data they shouldn’t see. If databases used by web servers are not secure, attackers may be able to access sensitive customer data, such as credit card information, from anywhere on the Internet.

  • Inappropriate usage—Inappropriate usage could take a number of forms. For example, a user might provide illegal copies of software to others through peer-to-peer (P2P) file-sharing services. This same P2P software could cause data leakage resulting in private data from the user’s computer being shared on the Internet to anyone else using the same P2P software. Another example is if a person threatens another person through email.

Regardless of the specifics of the incident, it is critical that the evidence be preserved. However, this topic takes on a new perspective in the case of incident response. The usual emphasis for corporate disaster recovery is simply a return to normal operations as soon as possible. Frequently, this is done at the expense of preserving forensic evidence. This can lead to many problems.

First and foremost, failure to preserve forensic information will prevent the IT team from effectively evaluating the cause of the incident and adjusting company policies and procedures to reduce the risk of such an incident being repeated. Even if the incident does not involve a crime, or the company simply does not desire to prosecute, forensic data is an integral part of preventing future incidents.

There are also situations in which the organization may not have initially thought a crime was committed, but further investigation reveals that a criminal act did occur. For example, a hard drive crash might initially be thought to be a normal failure of the device, but further examination uncovers malware that caused the hard drive to fail much sooner than it should have. If proper forensic procedures have not been followed, it may be impossible to prosecute or pursue civil litigation.