Table of Contents for
System Forensics, Investigation, and Response, 3rd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition System Forensics, Investigation, and Response, 3rd Edition by Easttom Published by Jones & Bartlett Learning, 2017
  1. Cover Page
  2. Contents
  3. System Forensics, Investigation, and Response
  4. Title Page
  5. Copyright Page
  6. Content
  7. Preface
  8. About the Author
  9. PART I Introduction to Forensics
  10. CHAPTER 1 Introduction to Forensics
  11. What Is Computer Forensics?
  12. Understanding the Field of Digital Forensics
  13. Knowledge Needed for Computer Forensics Analysis
  14. The Daubert Standard
  15. U.S. Laws Affecting Digital Forensics
  16. Federal Guidelines
  17. CHAPTER SUMMARY
  18. KEY CONCEPTS AND TERMS
  19. CHAPTER 1 ASSESSMENT
  20. CHAPTER 2 Overview of Computer Crime
  21. How Computer Crime Affects Forensics
  22. Identity Theft
  23. Hacking
  24. Cyberstalking and Harassment
  25. Fraud
  26. Non-Access Computer Crimes
  27. Cyberterrorism
  28. CHAPTER SUMMARY
  29. KEY CONCEPTS AND TERMS
  30. CHAPTER 2 ASSESSMENT
  31. CHAPTER 3 Forensic Methods and Labs
  32. Forensic Methodologies
  33. Formal Forensic Approaches
  34. Documentation of Methodologies and Findings
  35. Evidence-Handling Tasks
  36. How to Set Up a Forensic Lab
  37. Common Forensic Software Programs
  38. Forensic Certifications
  39. CHAPTER SUMMARY
  40. KEY CONCEPTS AND TERMS
  41. CHAPTER 3 ASSESSMENT
  42. PART II Technical Overview: SystemForensics Tools, Techniques, and Methods
  43. CHAPTER 4 Collecting, Seizing, and Protecting Evidence
  44. Proper Procedure
  45. Handling Evidence
  46. Storage Formats
  47. Forensic Imaging
  48. RAID Acquisitions
  49. CHAPTER SUMMARY
  50. KEY CONCEPTS AND TERMS
  51. CHAPTER 4 ASSESSMENT
  52. CHAPTER LAB
  53. CHAPTER 5 Understanding Techniques for Hiding and Scrambling Information
  54. Steganography
  55. Encryption
  56. CHAPTER SUMMARY
  57. KEY CONCEPTS AND TERMS
  58. CHAPTER 5 ASSESSMENT
  59. CHAPTER 6 Recovering Data
  60. Undeleting Data
  61. Recovering Information from Damaged Media
  62. File Carving
  63. CHAPTER SUMMARY
  64. KEY CONCEPTS AND TERMS
  65. CHAPTER 6 ASSESSMENT
  66. CHAPTER 7 Email Forensics
  67. How Email Works
  68. Email Protocols
  69. Email Headers
  70. Tracing Email
  71. Email Server Forensics
  72. Email and the Law
  73. CHAPTER SUMMARY
  74. KEY CONCEPTS AND TERMS
  75. CHAPTER 7 ASSESSMENT
  76. CHAPTER 8 Windows Forensics
  77. Windows Details
  78. Volatile Data
  79. Windows Swap File
  80. Windows Logs
  81. Windows Directories
  82. Index.dat
  83. Windows Files and Permissions
  84. The Registry
  85. Volume Shadow Copy
  86. Memory Forensics
  87. CHAPTER SUMMARY
  88. KEY CONCEPTS AND TERMS
  89. CHAPTER 8 ASSESSMENT
  90. CHAPTER 9 Linux Forensics
  91. Linux and Forensics
  92. Linux Basics
  93. Linux File Systems
  94. Linux Logs
  95. Linux Directories
  96. Shell Commands for Forensics
  97. Kali Linux Forensics
  98. Forensics Tools for Linux
  99. CHAPTER SUMMARY
  100. KEY CONCEPTS AND TERMS
  101. CHAPTER 9 ASSESSMENT
  102. CHAPTER 10 Macintosh Forensics
  103. Mac Basics
  104. Macintosh Logs
  105. Directories
  106. Macintosh Forensic Techniques
  107. How to Examine a Mac
  108. Can You Undelete in Mac?
  109. CHAPTER SUMMARY
  110. KEY CONCEPTS AND TERMS
  111. CHAPTER 10 ASSESSMENT
  112. CHAPTER 11 Mobile Forensics
  113. Cellular Device Concepts
  114. What Evidence You Can Get from a Cell Phone
  115. Seizing Evidence from a Mobile Device
  116. JTAG
  117. CHAPTER SUMMARY
  118. KEY CONCEPTS AND TERMS
  119. CHAPTER 11 ASSESSMENT
  120. CHAPTER 12 Performing Network Analysis
  121. Network Packet Analysis
  122. Network Traffic Analysis
  123. Router Forensics
  124. Firewall Forensics
  125. CHAPTER SUMMARY
  126. KEY CONCEPTS AND TERMS
  127. CHAPTER 12 ASSESSMENT
  128. PART III Incident Response and Resources
  129. CHAPTER 13 Incident and Intrusion Response
  130. Disaster Recovery
  131. Preserving Evidence
  132. Adding Forensics to Incident Response
  133. CHAPTER SUMMARY
  134. KEY CONCEPTS AND TERMS
  135. CHAPTER 13 ASSESSMENT
  136. CHAPTER 14 Trends and Future Directions
  137. Technical Trends
  138. Legal and Procedural Trends
  139. CHAPTER SUMMARY
  140. KEY CONCEPTS AND TERMS
  141. CHAPTER 14 ASSESSMENT
  142. CHAPTER 15 System Forensics Resources
  143. Tools to Use
  144. Resources
  145. Laws
  146. CHAPTER SUMMARY
  147. KEY CONCEPTS AND TERMS
  148. CHAPTER 15 ASSESSMENT
  149. APPENDIX A Answer Key
  150. APPENDIX B Standard Acronyms
  151. Glossary of Key Terms
  152. References
  153. Index

Email Protocols

The Simple Mail Transfer Protocol (SMTP) is a protocol used to send email. SMTP typically operates on port 25. For many years, Post Office Protocol version 3 (POP3) was the only means for retrieving email. POP3 operates on port 110. However, in recent years, POP3 has begun to be replaced by the Internet Message Access Protocol (IMAP), which operates on port 143. The main advantage of IMAP over POP3 is it allows the client to download only the email headers to the machine, so that the user can choose which messages are to be downloaded completely. This is particularly useful for smartphones and any wireless devices where bandwidth may be at a premium.

Each of these email protocols also has a secure version that is encrypted with the Transport Layer Security (TLS) Protocol. For SMTP, the secure alternative is SMTPS on port 465; for POP3, the secure version functions on port 995; and for IMAP, the secure version operates on port 993.

Faking Email

Criminals may fake their email messages. Some of them use email programs that strip the message header from the message before delivering it to the recipient. Or, they may bury the message header within the email program. In other cases, the “From:” line in a message header is fake.

In addition to manipulating the email header, perpetrators may simply set up a temporary, bogus email account. For example, free email accounts, as offered by Yahoo!, Gmail, and Hotmail, are easy to set up, and you can use any desired and available name.

Spoofing

Spoofing involves making an email message appear to come from someone or someplace other than the real sender or location. The email sender uses a software tool that is readily available on the Internet to cut out his or her IP address and replace it with someone else’s IP address. However, the first machine to receive the spoofed message records the machine’s real IP address. Thus, the header contains both the faked IP and the real IP address—unless, of course, the perpetrator is clever enough to have also spoofed his or her actual IP address.

Anonymous Remailing

Anonymous remailing is another attempt to throw tracing or tracking attempts off the trail. A suspect who uses anonymous remailing sends an email message to an anonymizer.

An anonymizer is an email server that strips identifying information from an email message before forwarding it with the anonymous mailing computer’s IP address.

To find out who sent remailed email, try to look at any logs maintained by remailer or anonymizer companies. However, these services frequently do not maintain logs. In addition, you can closely analyze the message for embedded information that might give clues to the user or system that sent the message.

There are many websites that let someone send an email and choose any “from” address he or she wants. Here are just a few:

Valid Emails

It is also very common for an email to arrive, often from a trusted friend, colleague, or family member, that is valid in every respect except for the content of the message. The email passes all of the normal validity checks, such as header structure and content, and even comes from a known nonspam email server that is not blacklisted with any of the blacklist services such as SPAM Cop. However, the message is suspect and the website uniform resource locator (URL) pointed to is usually a hacker or phishing site. The message may read something like “Wow! Check out this great website: www.hackersite.com.” These messages usually contain no hidden URLs, pictures, or attachments and are very short. However, clicking the URL can unleash all sorts of malicious software or other negative results. The cause of valid, but clearly suspect, emails is likely that the trusted friend’s computer is infected with malware.