Table of Contents for
System Forensics, Investigation, and Response, 3rd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition System Forensics, Investigation, and Response, 3rd Edition by Easttom Published by Jones & Bartlett Learning, 2017
  1. Cover Page
  2. Contents
  3. System Forensics, Investigation, and Response
  4. Title Page
  5. Copyright Page
  6. Content
  7. Preface
  8. About the Author
  9. PART I Introduction to Forensics
  10. CHAPTER 1 Introduction to Forensics
  11. What Is Computer Forensics?
  12. Understanding the Field of Digital Forensics
  13. Knowledge Needed for Computer Forensics Analysis
  14. The Daubert Standard
  15. U.S. Laws Affecting Digital Forensics
  16. Federal Guidelines
  17. CHAPTER SUMMARY
  18. KEY CONCEPTS AND TERMS
  19. CHAPTER 1 ASSESSMENT
  20. CHAPTER 2 Overview of Computer Crime
  21. How Computer Crime Affects Forensics
  22. Identity Theft
  23. Hacking
  24. Cyberstalking and Harassment
  25. Fraud
  26. Non-Access Computer Crimes
  27. Cyberterrorism
  28. CHAPTER SUMMARY
  29. KEY CONCEPTS AND TERMS
  30. CHAPTER 2 ASSESSMENT
  31. CHAPTER 3 Forensic Methods and Labs
  32. Forensic Methodologies
  33. Formal Forensic Approaches
  34. Documentation of Methodologies and Findings
  35. Evidence-Handling Tasks
  36. How to Set Up a Forensic Lab
  37. Common Forensic Software Programs
  38. Forensic Certifications
  39. CHAPTER SUMMARY
  40. KEY CONCEPTS AND TERMS
  41. CHAPTER 3 ASSESSMENT
  42. PART II Technical Overview: SystemForensics Tools, Techniques, and Methods
  43. CHAPTER 4 Collecting, Seizing, and Protecting Evidence
  44. Proper Procedure
  45. Handling Evidence
  46. Storage Formats
  47. Forensic Imaging
  48. RAID Acquisitions
  49. CHAPTER SUMMARY
  50. KEY CONCEPTS AND TERMS
  51. CHAPTER 4 ASSESSMENT
  52. CHAPTER LAB
  53. CHAPTER 5 Understanding Techniques for Hiding and Scrambling Information
  54. Steganography
  55. Encryption
  56. CHAPTER SUMMARY
  57. KEY CONCEPTS AND TERMS
  58. CHAPTER 5 ASSESSMENT
  59. CHAPTER 6 Recovering Data
  60. Undeleting Data
  61. Recovering Information from Damaged Media
  62. File Carving
  63. CHAPTER SUMMARY
  64. KEY CONCEPTS AND TERMS
  65. CHAPTER 6 ASSESSMENT
  66. CHAPTER 7 Email Forensics
  67. How Email Works
  68. Email Protocols
  69. Email Headers
  70. Tracing Email
  71. Email Server Forensics
  72. Email and the Law
  73. CHAPTER SUMMARY
  74. KEY CONCEPTS AND TERMS
  75. CHAPTER 7 ASSESSMENT
  76. CHAPTER 8 Windows Forensics
  77. Windows Details
  78. Volatile Data
  79. Windows Swap File
  80. Windows Logs
  81. Windows Directories
  82. Index.dat
  83. Windows Files and Permissions
  84. The Registry
  85. Volume Shadow Copy
  86. Memory Forensics
  87. CHAPTER SUMMARY
  88. KEY CONCEPTS AND TERMS
  89. CHAPTER 8 ASSESSMENT
  90. CHAPTER 9 Linux Forensics
  91. Linux and Forensics
  92. Linux Basics
  93. Linux File Systems
  94. Linux Logs
  95. Linux Directories
  96. Shell Commands for Forensics
  97. Kali Linux Forensics
  98. Forensics Tools for Linux
  99. CHAPTER SUMMARY
  100. KEY CONCEPTS AND TERMS
  101. CHAPTER 9 ASSESSMENT
  102. CHAPTER 10 Macintosh Forensics
  103. Mac Basics
  104. Macintosh Logs
  105. Directories
  106. Macintosh Forensic Techniques
  107. How to Examine a Mac
  108. Can You Undelete in Mac?
  109. CHAPTER SUMMARY
  110. KEY CONCEPTS AND TERMS
  111. CHAPTER 10 ASSESSMENT
  112. CHAPTER 11 Mobile Forensics
  113. Cellular Device Concepts
  114. What Evidence You Can Get from a Cell Phone
  115. Seizing Evidence from a Mobile Device
  116. JTAG
  117. CHAPTER SUMMARY
  118. KEY CONCEPTS AND TERMS
  119. CHAPTER 11 ASSESSMENT
  120. CHAPTER 12 Performing Network Analysis
  121. Network Packet Analysis
  122. Network Traffic Analysis
  123. Router Forensics
  124. Firewall Forensics
  125. CHAPTER SUMMARY
  126. KEY CONCEPTS AND TERMS
  127. CHAPTER 12 ASSESSMENT
  128. PART III Incident Response and Resources
  129. CHAPTER 13 Incident and Intrusion Response
  130. Disaster Recovery
  131. Preserving Evidence
  132. Adding Forensics to Incident Response
  133. CHAPTER SUMMARY
  134. KEY CONCEPTS AND TERMS
  135. CHAPTER 13 ASSESSMENT
  136. CHAPTER 14 Trends and Future Directions
  137. Technical Trends
  138. Legal and Procedural Trends
  139. CHAPTER SUMMARY
  140. KEY CONCEPTS AND TERMS
  141. CHAPTER 14 ASSESSMENT
  142. CHAPTER 15 System Forensics Resources
  143. Tools to Use
  144. Resources
  145. Laws
  146. CHAPTER SUMMARY
  147. KEY CONCEPTS AND TERMS
  148. CHAPTER 15 ASSESSMENT
  149. APPENDIX A Answer Key
  150. APPENDIX B Standard Acronyms
  151. Glossary of Key Terms
  152. References
  153. Index

Evidence-Handling Tasks

A system forensics specialist has three basic tasks related to handling evidence:

  • Find evidence: Gathering computer evidence goes beyond normal data recovery. Finding and isolating evidence to prove or disprove allegations can be difficult. Investigators may need to investigate thousands of active files and fragments of deleted files to find just one that makes a case. System forensics has therefore been described as looking for one needle in a mountain of needles. Examiners often work in secure laboratories where they check for viruses in suspect machines and isolate data to avoid contamination.

  • Preserve evidence: Preserving computer evidence is important because data can be destroyed easily. The 1s and 0s that make up data can be hidden and vanish instantly with the push of a button. As a result, forensic examiners should assume that every computer has been rigged to destroy evidence. They must proceed with care in handling computers and storage media.

  • Prepare evidence: Evidence must be able to withstand judicial scrutiny. Therefore, preparing evidence requires patience and thorough documentation. Failing to document where evidence comes from and failing to ensure that it has not been changed can ruin a case. Judges have dismissed cases because of such failures.

Evidence-Gathering Measures

Here are principles to use when you gather evidence:

  • Avoid changing the evidence: Photograph equipment in place as you find it before you remove it. Label wires and sockets so that you can put everything back as it was once you get computers and other equipment into your lab. Transport items carefully, and avoid touching hard disks or CDs. Make exact bit-by-bit copies and store them on a medium such as a write-once CD.

  • Determine when evidence was created: You should create timelines of computer usage and file accesses. This can be difficult, because there are so many ways to falsify data. But timelines can make or break a case.

  • Trust only physical evidence: The 1s and 0s of data are recorded at the physical level of magnetic materials. This is what counts in system forensics. Other items may be corrupt.

  • Search throughout a device: You need to search at this level of 1s and 0s across a wide range of areas inside a computer.

  • Present the evidence well: Forensic examiners must present computer evidence in a logical, compelling, and persuasive manner. A jury must be able to understand the evidence. In addition, the evidence should be solid enough that a defense counsel cannot rebut it.

Expert Reports

An expert report is a formal document that details the expert’s findings. Often this is filed in a case prior to trial. If there are depositions, then the expert report will probably be used as the basis for some questions you are asked during deposition. An expert report will always be needed in civil cases, but may or may not be required in criminal cases. When you do need to write an expert report, it is critical that you do so properly. You should consider several issues.

The first issue is the format of the report. You usually list all items, documents, and evidence you considered. You also detail tests you performed, analysis done, and your conclusion. You should list your entire curriculum vitae (CV)—an extensive document detailing your experience and qualifications for a position—in an appendix. Keep in mind that a CV is much more thorough than a résumé. You should list every publication, award, or credential you have earned. A CV should also include more detail on work history and educational history.

Another issue for your report is thoroughness. In most jurisdictions, if it is not in your report, you are not allowed to testify about it at trial. So be very thorough. Anything you leave out may become a problem at trial. It is critical that you be detailed in what you write and that you document all the analysis done. For example, if you performed three tests and all three support a specific conclusion, make sure you list all three tests. If you list just one, then that is the only test you can testify about at trial.

Finally, back up everything you say. Clearly, you are an expert in forensics or else you would not be asked to testify. But remember that there is an opposing counsel whose job it is to disagree with you. The opposing counsel may have his or her own expert who will testify to different conclusions. It’s good to have well-respected references to support any important claims you make. This way, it is not just your opinion, but rather your opinion along with the support of multiple credible sources.