Table of Contents for
Running Linux, 5th Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Running Linux, 5th Edition by Matt Welsh Published by O'Reilly Media, Inc., 2005
  1. Cover
  2. Running Linux, 5th Edition
  3. Preface
  4. Organization of This Book
  5. Conventions Used in This Book
  6. Using Code Examples
  7. How to Contact Us
  8. Safari® Enabled
  9. Acknowledgments
  10. I. Enjoying and Being Productive on Linux
  11. 1. Introduction to Linux
  12. 1.1. About This Book
  13. 1.2. Who’s Using Linux?
  14. 1.3. System Features
  15. 1.4. About Linux’s Copyright
  16. 1.5. Open Source and the Philosophy of Linux
  17. 1.6. Sources of Linux Information
  18. 1.7. Getting Help
  19. 2. Preinstallation and Installation
  20. 2.1. Distributions of Linux
  21. 2.2. Preparing to Install Linux
  22. 2.3. Post-Installation Procedures
  23. 2.4. Running into Trouble
  24. 3. Desktop Environments
  25. 3.1. Why Use a Graphical Desktop?
  26. 3.2. The K Desktop Environment
  27. 3.3. KDE Applications
  28. 3.4. The GNOME Desktop Environment
  29. 3.5. GNOME Applications
  30. 4. Basic Unix Commands and Concepts
  31. 4.1. Logging In
  32. 4.2. Setting a Password
  33. 4.3. Virtual Consoles
  34. 4.4. Popular Commands
  35. 4.5. Shells
  36. 4.6. Useful Keys and How to Get Them to Work
  37. 4.7. Typing Shortcuts
  38. 4.8. Filename Expansion
  39. 4.9. Saving Your Output
  40. 4.10. What Is a Command?
  41. 4.11. Putting a Command in the Background
  42. 4.12. Remote Logins and Command Execution
  43. 4.13. Manual Pages
  44. 4.14. Startup Files
  45. 4.15. Important Directories
  46. 4.16. Basic Text Editing
  47. 4.17. Advanced Shells and Shell Scripting
  48. 5. Web Browsers and Instant Messaging
  49. 5.1. The World Wide Web
  50. 5.2. Instant Messaging
  51. 6. Electronic Mail Clients
  52. 6.1. Using KMail
  53. 6.2. Using Mozilla Mail & News
  54. 6.3. Getting the Mail to Your Computer with fetchmail
  55. 6.4. OpenPGP Encryption with GnuPG
  56. 7. Games
  57. 7.1. Gaming
  58. 7.2. Quake III
  59. 7.3. Return to Castle Wolfenstein
  60. 7.4. Unreal Tournament 2004
  61. 7.5. Emulators
  62. 7.6. Frozen Bubble
  63. 7.7. Tux Racer
  64. 8. Office Suites and Personal Productivity
  65. 8.1. Using OpenOffice
  66. 8.2. KOffice
  67. 8.3. Other Word Processors
  68. 8.4. Synching PDAs
  69. 8.5. Groupware
  70. 8.6. Managing Your Finances
  71. 9. Multimedia
  72. 9.1. Multimedia Concepts
  73. 9.2. Kernel and Driver Issues
  74. 9.3. Embedded and Other Multimedia Devices
  75. 9.4. Desktop Environments
  76. 9.5. Windows Compatibility
  77. 9.6. Multimedia Applications
  78. 9.7. Multimedia Toolkits and Development Environments
  79. 9.8. Solutions to Common Problems
  80. 9.9. References
  81. II. System Administration
  82. 10. System Administration Basics
  83. 10.1. Maintaining the System
  84. 10.2. Managing Filesystems
  85. 10.3. Managing Swap Space
  86. 10.4. The /proc Filesystem
  87. 10.5. Device Files
  88. 10.6. Scheduling Recurring Jobs Using cron
  89. 10.7. Executing Jobs Once
  90. 10.8. Managing System Logs
  91. 10.9. Processes
  92. 10.10. Programs That Serve You
  93. 11. Managing Users, Groups, and Permissions
  94. 11.1. Managing User Accounts
  95. 11.2. File Ownership and Permissions
  96. 11.3. Changing the Owner, Group, and Permissions
  97. 12. Installing, Updating, and Compiling Programs
  98. 12.1. Upgrading Software
  99. 12.2. General Upgrade Procedure
  100. 12.3. Automated and Bulk Upgrades
  101. 12.4. Upgrading Software Not Provided in Packages
  102. 12.5. Archive and Compression Utilities
  103. 13. Networking
  104. 13.1. Networking with TCP/IP
  105. 13.2. Dial-Up PPP
  106. 13.3. PPP over ISDN
  107. 13.4. ADSL
  108. 13.5. Cable Modems
  109. 13.6. Network Diagnostics Tools
  110. 14. Printing
  111. 14.1. Printing
  112. 14.2. Managing Print Services
  113. 15. File Sharing
  114. 15.1. Sharing Files with Windows Systems (Samba)
  115. 15.2. NFS Configuration and NIS
  116. 16. The X Window System
  117. 16.1. A History of X
  118. 16.2. X Concepts
  119. 16.3. Hardware Requirements
  120. 16.4. Installing X.org
  121. 16.5. Configuring X.org
  122. 16.6. Running X
  123. 16.7. Running into Trouble
  124. 16.8. X and 3D
  125. 17. System Start and Shutdown
  126. 17.1. Booting the System
  127. 17.2. System Startup and Initialization
  128. 17.3. Single-User Mode
  129. 17.4. Shutting Down the System
  130. 17.5. A Graphical Runlevel Editor: KSysV
  131. 18. Configuring and Building the Kernel
  132. 18.1. Building a New Kernel
  133. 18.2. Loadable Device Drivers
  134. 18.3. Loading Modules Automatically
  135. 19. Text Editing
  136. 19.1. Editing Files Using vi
  137. 19.2. The (X)Emacs Editor
  138. 20. Text Processing
  139. 20.1. TeX and LaTeX
  140. 20.2. XML and DocBook
  141. 20.3. groff
  142. 20.4. Texinfo
  143. III. Programming
  144. 21. Programming Tools
  145. 21.1. Programming with gcc
  146. 21.2. Makefiles
  147. 21.3. Debugging with gdb
  148. 21.4. Useful Utilities for C Programmers
  149. 21.5. Using Perl
  150. 21.6. Java
  151. 21.7. Python
  152. 21.8. Other Languages
  153. 21.9. Introduction to OpenGL Programming
  154. 21.10. Integrated Development Environments
  155. 22. Running a Web Server
  156. 22.1. Configuring Your Own Web Server
  157. 23. Transporting and Handling Email Messages
  158. 23.1. The Postfix MTA
  159. 23.2. Procmail
  160. 23.3. Filtering Spam
  161. 24. Running an FTP Server
  162. 24.1. Introduction
  163. 24.2. Compiling and Installing
  164. 24.3. Running ProFTPD
  165. 24.4. Configuration
  166. IV. Network Services
  167. 25. Running Web Applications with MySQL and PHP
  168. 25.1. MySQL
  169. 25.2. PHP
  170. 25.3. The LAMP Server in Action
  171. 26. Running a Secure System
  172. 26.1. A Perspective on System Security
  173. 26.2. Initial Steps in Setting Up a Secure System
  174. 26.3. TCP Wrapper Configuration
  175. 26.4. Firewalls: Filtering IP Packets
  176. 26.5. SELinux
  177. 27. Backup and Recovery
  178. 27.1. Making Backups
  179. 27.2. What to Do in an Emergency
  180. 28. Heterogeneous Networking and Running Windows Programs
  181. 28.1. Sharing Partitions
  182. 28.2. Emulation and Virtual Operating Systems
  183. 28.3. Remote Desktop Access to Windows Programs
  184. 28.4. FreeNX: Linux as a Remote Desktop Server
  185. A. Sources of Linux Information
  186. A.1. Linux Documentation Project
  187. A.2. FTP Sites
  188. A.3. World Wide Web Sites
  189. About the Authors
  190. Colophon
  191. Copyright

Post-Installation Procedures

After you have completed installing the Linux software, you should be able to reboot the system, log in as root, and begin exploring the system. (Each distribution has a different method for doing this; follow the instructions given by the distribution.)

Before you strike out on your own, however, there are some tasks you should do now that may save you a lot of grief later. Some of these tasks are trivial if you have the right hardware and Linux distribution; others may involve a little research on your part, and you may decide to postpone them.

Creating a User Account

In order to start using your system, you need to create a user account for yourself. Eventually, if you plan to have other users on your system, you’ll create user accounts for them as well. But before you begin to explore you need at least one account.

Why is this? Every Linux system has several preinstalled accounts, such as root. The root account, however, is intended exclusively for administrative purposes. As root you have all kinds of privileges and can access all files on your system.

However, using root can be dangerous, especially if you’re new to Linux. Because there are no restrictions on what root can do, it’s all too easy to mistype a command, inadvertently delete files, damage your filesystem, and so on. You should log in as root only when you need to perform system administration tasks, such as fixing configuration files, installing new software, and so on. See "Maintaining the System" in Chapter 10 for details.[*]

For normal usage, you should create a standard user account. Unix systems have built-in security that prevents users from deleting other users’ files and corrupting important resources, such as system configuration files. As a regular user, you’ll be protecting yourself from your own mistakes. This is especially true for users who don’t have Unix system administration experience.

Many Linux distributions provide tools for creating new accounts. These programs are usually called useradd or adduser. As root, invoking one of these commands should present you with a usage summary for the command, and creating a new account should be fairly self-explanatory.

Most modern distributions provide a generic system administration tool for various tasks, one of which is creating a new user account.

Again, other distributions, such as SUSE Linux, Red Hat Linux, or Mandriva, integrate system installation and system administration in one tool (e.g., yast or yast2 on SUSE Linux).

If all else fails, you can create an account by hand. Usually, all that is required to create an account is the following:

  1. Edit the file /etc/passwd to add the new user. (Doing this with vipw--instead of editing the file directly — will protect you against concurrent changes of the password file, but vipw is not available on all distributions.)

  2. Optionally edit the file /etc/shadow to specify “shadow password” attributes for the new user.

  3. Create the user’s home directory.

  4. Copy skeleton configuration files (such as .bashrc) to the new user’s home directory. These can sometimes be found in the directory /etc/skel.

We don’t want to go into great detail here: the particulars of creating a new user account can be found in virtually every book on Unix system administration. We also talk about creating users in “Managing User Accounts” in Chapter 11. You should be able to find a tool that takes care of these details for you.

Keep in mind that to set or change the password on the new account, you use the passwd command. For example, to change the password for the user duck, issue the following command:

    # passwd duck

This will prompt you to set or change the password for duck. If you execute the passwd command as root, it will not prompt you for the original password. In this way, if you have forgotten your old password but can still log in as root, you can reset it.

Getting Online Help

Linux provides online help in the form of manual pages. Throughout this book, we’ll be directing you to look at the manual pages for particular commands to get more information. Manual pages describe programs and applications on the system in detail, and it’s important for you to learn how to access this online documentation in case you get into a bind.

To get online help for a particular command, use the man command. For example, to get information on the passwd command, type the following command:

    $ man passwd

This should present you with the manual page for passwd.

Usually, manual pages are provided as an optional package with most distributions, so they won’t be available unless you have opted to install them. However, we very strongly advise you to install the manual pages. You will feel lost many times without them.

In addition, certain manual pages may be missing or incomplete on your system. It depends on how complete your distribution is and how up-to-date the manual pages are.

Linux manual pages also document system calls, library functions, configuration file formats, and kernel internals. In “Manual Pages” in Chapter 4, we describe their use in more detail.

Besides traditional manual pages, there are also so-called Info pages. These can be read with the text editor Emacs, the command info, or one of many graphical info readers available.

Many distributions also provide documentation in HTML format that you can read with any web browser, such as Konqueror, as well as with Emacs.

Finally, there are documentation files that are simply plain text. You can read these with any text editor or simply with the command more.

If you cannot find documentation for a certain command, you can also try running it with either the -h or -help option. Most commands then provide a brief summary of their usage.

Editing /etc/fstab

In order to ensure that all your Linux filesystems will be available when you reboot the system, you may need to edit the file /etc/fstab, which describes your filesystems. Many distributions automatically generate the /etc/fstab file for you during installation, so all may be well. However, if you have additional filesystems that were not used during the installation process, you may need to add them to /etc/fstab in order to make them available. Swap partitions should be included in /etc/fstab as well.

In order to access a filesystem, it must be mounted on your system. Mounting a filesystem associates that filesystem with a particular directory. For example, the root filesystem is mounted on /, the /usr filesystem on /usr, and so on. (If you did not create a separate filesystem for /usr, all files under /usr will be stored on the root filesystem.)

We don’t want to smother you with technical details here, but it is important to understand how to make your filesystems available before exploring the system. For more details on mounting filesystems, see "Mounting Filesystems" in Chapter 10, or any book on Unix system administration.

The root filesystem is automatically mounted on / when you boot Linux. However, your other filesystems must be mounted individually. Usually, this is accomplished with the command:

    # mount -av

in one of the system startup files in /etc/rc.d or wherever your distribution stores its configuration files. This tells the mount command to mount any filesystems listed in the file /etc/fstab. Therefore, in order to have your filesystems mounted automatically at boot time, you need to include them in /etc/fstab. (Of course, you could always mount the filesystems by hand, using the mount command after booting, but this is unnecessary work.)

Here is a sample /etc/fstab file, shortened by omitting the last two parameters in each line, which are optional and not relevant to the discussion here. In this example, the root filesystem is on /dev/hda1, the /home filesystem is on /dev/hdb2, and the swap partition is on /dev/hdb1:

    # /etc/fstab
    # device      directory   type   options
    #
    /dev/hda1     /           ext3   defaults
    /dev/hdb2     /home       ext3   defaults
    /dev/hdb1     none        swap   sw
    /proc         /proc       proc   defaults

The lines beginning with the "#" character are comments. Also, you’ll notice an additional entry for /proc. /proc is a “virtual filesystem” used to gather process information by commands such as ps.

As you can see, /etc/fstab consists of a series of lines. The first field of each line is the device name of the partition, such as /dev/hda1. The second field is the mount point--the directory where the filesystem is mounted. The third field is the type; Linux ext3fs filesystems should use ext3 for this field. swap should be used for swap partitions. The fourth field is for mounting options. You should use defaults in this field for filesystems and sw for swap partitions.

Using this example as a model, you should be able to add entries for any filesystems not already listed in the /etc/fstab file.

How do we add entries to the file? The easiest way is to edit the file, as root, using an editor such as vi or Emacs. We won’t get into the use of text editors here. vi and Emacs are both covered in Chapter 19.

After editing the file, you’ll need to issue the command:

    # /bin/mount -a

or reboot for the changes to take effect.

If you’re stuck at this point, don’t be alarmed. We suggest that Unix novices do some reading on basic Unix usage and system administration. We offer a lot of introductory material in upcoming chapters, and most of the remainder of this book is going to assume familiarity with these basics, so don’t say we didn’t warn you.

Shutting Down the System

You should never reboot or shut down your Linux system by pressing the reset switch or simply turning off the power. As with most Unix systems, Linux caches disk writes in memory. Therefore, if you suddenly reboot the system without shutting down cleanly, you can corrupt the data on your drives. Note, however, that the “Vulcan nerve pinch” (pressing Ctrl-Alt-Delete in unison) is generally safe: the kernel traps the key sequence and passes it to the init process, which, in turn, initiates a clean shutdown of the system (or whatever it is configured to do in this case; see "init, inittab, and rc Files" in Chapter 17). Your system configuration might reserve the Ctrl-Alt-Delete for the system administrator so that normal users cannot shut down the network server that the whole department depends upon. To set permissions for this keystroke combination, create a file called /etc/shutdown.allow that lists the names of all the users who are allowed to shut down the machine.

The easiest way to shut down the system is with the shutdown command. As an example, to shut down and reboot the system immediately, use the following command as root:

    # shutdown -r now

This will cleanly reboot your system. The manual page for shutdown describes the other available command-line arguments. Instead of now, you can also specify when the system should be shut down. Most distributions also provide halt, which calls shutdown now. Some distributions also provide poweroff, which actually shuts down the computer and turns it off. Whether it works depends on the hardware and the BIOS (which must support APM or ACPI), not on Linux.



[*] A side note: on a Windows 95/98/ME system, the user is always the equivalent of a root user, whether that power is needed or not.