Table of Contents for
Linux in a Windows World

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Linux in a Windows World by Roderick W Smith Published by O'Reilly Media, Inc., 2005
  1. Cover
  2. Linux in a Windows World
  3. Dedication
  4. Preface
  5. Contents of This Book
  6. Conventions Used in This Book
  7. Using Code Examples
  8. Comments and Questions
  9. Safari Enabled
  10. Acknowledgments
  11. I. Linux’s Place in a Windows Network
  12. 1. Linux’s Features
  13. Linux as a Server
  14. Linux on the Desktop
  15. Comparing Linux and Windows Features
  16. Summary
  17. 2. Linux Deployment Strategies
  18. Linux Desktop Migration
  19. Linux and Thin Clients
  20. Summary
  21. II. Sharing Files and Printers
  22. 3. Basic Samba Configuration
  23. The Samba Configuration File Format
  24. Identifying the Server
  25. Setting Master Browser Options
  26. Setting Password Options
  27. Summary
  28. 4. File and Printer Shares
  29. Printing with CUPS
  30. Creating a Printer Share
  31. Delivering Printer Drivers to Windows Clients
  32. Example Shares
  33. Summary
  34. 5. Managing a NetBIOS Network with Samba
  35. Enabling NBNS Functions
  36. Assuming Master Browser Duties
  37. Summary
  38. 6. Linux as an SMB/CIFS Client
  39. Accessing File Shares
  40. Printing to Printer Shares
  41. Configuring GUI Workgroup Browsers
  42. Summary
  43. III. Centralized Authentication Tools
  44. 7. Using NT Domains for Linux Authentication
  45. Samba Winbind Configuration
  46. PAM and NSS Winbind Options
  47. Winbind in Action
  48. Summary
  49. 8. Using LDAP
  50. Configuring an OpenLDAP Server
  51. Creating a User Directory
  52. Configuring Linux to Use LDAP for Login Authentication
  53. Configuring Windows to Use LDAPfor Login Authentication
  54. Summary
  55. 9. Kerberos Configuration and Use
  56. Linux Kerberos Server Configuration
  57. Kerberos Application Server Configuration
  58. Linux Kerberos Client Configuration
  59. Windows Kerberos Tools
  60. Summary
  61. IV. Remote Login Tools
  62. 10. Remote Text-Mode Administration and Use
  63. SSH Server Configuration
  64. Telnet Server Configuration
  65. Windows Remote-Login Tools
  66. Summary
  67. 11. Running GUI Programs Remotely
  68. Using Remote X Access
  69. Encrypting X by SSH Tunneling
  70. VNC Configuration and Use
  71. Running Windows Programs from Linux
  72. Summary
  73. 12. Linux Thin Client Configurations
  74. Hardware Requirements
  75. Linux as a Server for Thin Clients
  76. Linux as a Thin Client
  77. Summary
  78. V. Additional Server Programs
  79. 13. Configuring Mail Servers
  80. Configuring Sendmail
  81. Configuring Postfix
  82. Configuring POP and IMAP Servers
  83. Scanning for Spam, Worms, and Viruses
  84. Supplementing a Microsoft Exchange Server
  85. Using Fetchmail
  86. Summary
  87. 14. Network Backups
  88. Backing Up the Linux System
  89. Backing Up with Samba
  90. Backing Up with AMANDA
  91. Summary
  92. 15. Managing a Network with Linux
  93. Delivering Names with DNS
  94. Keeping Clocks Synchronized with NTP
  95. Summary
  96. VI. Appendixes
  97. A. Configuring PAM
  98. The PAM Configuration File Format
  99. PAM Modules
  100. Sample PAM Configurations
  101. Summary
  102. B. Linux on the Desktop
  103. Configuring Applications and Environments
  104. Running Windows Programs in Linux
  105. File and Filesystem Compatibility
  106. Font Handling
  107. Summary
  108. Index
  109. Colophon

Chapter 1. Linux’s Features

Linux can be an effective addition to a Windows network for several reasons, most of which boil down to cost. Windows has achieved dominance, in part, by being less expensive than competitors from the 1990s, but today Linux can be less expensive to own and operate. This is particularly true if you’re running Windows NT 4.0, which has reached end-of-life and is no longer supported. (Windows 2000 will soon fall into this category, as well.) For these old versions of Windows, you’re faced with the prospect of paying to upgrade to a newer version of Windows or switch to another operating system. Linux can be that other OS, but you should know something about Linux’s features and capabilities before you deploy it.

Effectively deploying Linux requires understanding the OS’s capabilities and where it makes the most sense to use. This chapter begins with a look at the Linux roles that this book describes in subsequent chapters. The bulk of this chapter is devoted to an overview of Linux’s capabilities and requirements when used as a server or as a desktop system. Because you may be considering replacing Windows systems with Linux, this chapter concludes with a comparison of Linux to Windows in these two roles.

Where Linux Fits in a Network

Most operating systems—and Linux is no exception to this rule—can be used in a variety of ways. You can run Linux (or Windows, or Mac OS, or most other common general-purposes OSs) on personal productivity desktop systems, on mail server computers, on routers, and so on. This book doesn’t cover every possible use of Linux; instead, it focuses on how Linux interacts with Windows systems on a local area network (LAN) or how Linux can take over traditional Windows duties. This book will further focus on areas in which you can get the most “bang for the buck” by deploying Linux, either in addition to or instead of Windows systems. Chapter 2 covers Linux deployment strategies in greater detail, but, for now, consider Figure 1-1, which depicts a typical office network. Linux’s mascot is a penguin (known as Tux), so Figure 1-1 uses penguin images to mark the areas of Linux deployment covered in this book.

The uses for Linux described in this book

Figure 1-1. The uses for Linux described in this book

Of course, Linux can be used in roles not shown in Figure 1-1. In fact, Linux can be an excellent choice for an OS for such roles as a web server; however, because such uses aren’t LAN-centric or don’t tie closely to Windows, this book doesn’t cover them. You might want to begin with just one or two functions for Linux on your network, such as a file server or a Dynamic Host Configuration Protocol (DHCP) server. Some systems, such as backend database servers, may be so vital and data-intensive that replacing them with Linux systems, although possible, is a major undertaking that can’t be adequately covered here.