Table of Contents for
Web Mapping Illustrated

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Web Mapping Illustrated by Tyler Mitchell Published by O'Reilly Media, Inc., 2005
  1. Web Mapping Illustrated
  2. Cover
  3. Web Mapping Illustrated
  4. A Note Regarding Supplemental Files
  5. Foreword
  6. Preface
  7. Youthful Exploration
  8. The Tools in This Book
  9. What This Book Covers
  10. Organization of This Book
  11. Conventions Used in This Book
  12. Safari Enabled
  13. Comments and Questions
  14. Acknowledgments
  15. 1. Introduction to Digital Mapping
  16. 1.1. The Power of Digital Maps
  17. 1.2. The Difficulties of Making Maps
  18. 1.3. Different Kinds of Web Mapping
  19. 2. Digital Mapping Tasks and Tools
  20. 2.1. Common Mapping Tasks
  21. 2.2. Common Pitfalls, Deadends, and Irritations
  22. 2.3. Identifying the Types of Tasks for a Project
  23. 3. Converting and Viewing Maps
  24. 3.1. Raster and Vector
  25. 3.2. OpenEV
  26. 3.3. MapServer
  27. 3.4. Geospatial Data Abstraction Library (GDAL)
  28. 3.5. OGR Simple Features Library
  29. 3.6. PostGIS
  30. 3.7. Summary of Applications
  31. 4. Installing MapServer
  32. 4.1. How MapServer Applications Operate
  33. 4.2. Walkthrough of the Main Components
  34. 4.3. Installing MapServer
  35. 4.4. Getting Help
  36. 5. Acquiring Map Data
  37. 5.1. Appraising Your Data Needs
  38. 5.2. Acquiring the Data You Need
  39. 6. Analyzing Map Data
  40. 6.1. Downloading the Demonstration Data
  41. 6.2. Installing Data Management Tools: GDAL and FWTools
  42. 6.3. Examining Data Content
  43. 6.4. Summarizing Information Using Other Tools
  44. 7. Converting Map Data
  45. 7.1. Converting Map Data
  46. 7.2. Converting Vector Data
  47. 7.3. Converting Raster Data to Other Formats
  48. 8. Visualizing Mapping Data in a Desktop Program
  49. 8.1. Visualization and Mapping Programs
  50. 8.2. Using OpenEV
  51. 8.3. OpenEV Basics
  52. 9. Create and Edit Personal Map Data
  53. 9.1. Planning Your Map
  54. 9.2. Preprocessing Data Examples
  55. 10. Creating Static Maps
  56. 10.1. MapServer Utilities
  57. 10.2. Sample Uses of the Command-Line Utilities
  58. 10.3. Setting Output Image Formats
  59. 11. Publishing Interactive Maps on the Web
  60. 11.1. Preparing and Testing MapServer
  61. 11.2. Create a Custom Application for a Particular Area
  62. 11.3. Continuing Education
  63. 12. Accessing Maps Through Web Services
  64. 12.1. Web Services for Mapping
  65. 12.2. What Do Web Services for Mapping Do?
  66. 12.3. Using MapServer with Web Services
  67. 12.4. Reference Map Files
  68. 13. Managing a Spatial Database
  69. 13.1. Introducing PostGIS
  70. 13.2. What Is a Spatial Database?
  71. 13.3. Downloading PostGIS Install Packages and Binaries
  72. 13.4. Compiling from Source Code
  73. 13.5. Steps for Setting Up PostGIS
  74. 13.6. Creating a Spatial Database
  75. 13.7. Load Data into the Database
  76. 13.8. Spatial Data Queries
  77. 13.9. Accessing Spatial Data from PostGIS in Other Applications
  78. 14. Custom Programming with MapServer’s MapScript
  79. 14.1. Introducing MapScript
  80. 14.2. Getting MapScript
  81. 14.3. MapScript Objects
  82. 14.4. MapScript Examples
  83. 14.5. Other Resources
  84. 14.6. Parallel MapScript Translations
  85. A. A Brief Introduction to Map Projections
  86. A.1. The Third Spheroid from the Sun
  87. A.2. Using Map Projections with MapServer
  88. A.3. Map Projection Examples
  89. A.4. Using Projections with Other Applications
  90. A.5. References
  91. B. MapServer Reference Guide for Vector Data Access
  92. B.1. Vector Data
  93. B.2. Data Format Guide
  94.  
  95. ESRI Shapefiles (SHP)
  96.  
  97. PostGIS/PostgreSQL Database
  98.  
  99. MapInfo Files (TAB/MID/MIF)
  100.  
  101. Oracle Spatial Database
  102.  
  103. Web Feature Service (WFS)
  104.  
  105. Geography Markup Language Files (GML)
  106.  
  107. VirtualSpatialData (ODBC/OVF)
  108.  
  109. TIGER/Line Files
  110.  
  111. ESRI ArcInfo Coverage Files
  112.  
  113. ESRI ArcSDE Database (SDE)
  114.  
  115. Microstation Design Files (DGN)
  116.  
  117. IHO S-57 Files
  118.  
  119. Spatial Data Transfer Standard Files (SDTS)
  120.  
  121. Inline MapServer Features
  122.  
  123. National Transfer Format Files (NTF)
  124. About the Author
  125. Colophon
  126. Copyright

Chapter 2. Digital Mapping Tasks and Tools

Maps can be beautiful. Some antique maps, found today in prints, writing paper, and even greeting cards, are appreciated more for their aesthetic value than their original cartographic use. The aspiring map maker can be intimidated by these masterpieces of science and art. Fortunately, the mapping process doesn’t need to be intimidating or mystical.

Before you begin, you should know that all maps serve a specific purpose. If you understand that purpose, you’ve decoded the most important piece of a mapping project. This is true regardless of how the map is made. Traditional tools were pen and ink, not magic. Digital maps are just a drawing made up of points strung together into lines and shapes, or a mosaic of colored squares.

The purpose and fundamentals of digital mapping are no different and no more complex than traditional mapping. In the past, a cartographer would sit down, pull out some paper, and sketch a map. Of course, this took skill, knowledge, and a great deal of patience. Using digital tools, the computer is the canvas, and software tools do the drawing using geographic data as the knowledge base. Not only do digital tools make more mapping possible, in most cases digital solutions make the work ridiculously easy.

This chapter explores the common tasks, pitfalls, and issues involved in creating maps using computerized methods. This includes an overview of the types of tasks involved with digital mapping—the communication of information using a variety of powerful media including maps, images, and other sophisticated graphics. The goals of digital mapping are no different than that of traditional mapping: they present geographic or location-based information to a particular audience for a particular purpose. Perhaps your job requires you to map out a proposed subdivision. Maybe you want to show where the good fishing spots are in the lake by your summer cabin. Different reasons yield the same desired goal: a map.

For the most part, the terms geographic information and maps can be used interchangeably, but maps usually refer to the output (printed or digital) of the mapping process. Geographic information refers to digital data stored in files on a computer that’s used for a variety of purposes.

When the end product of a field survey is a hardcopy map, the whole process results in a paper map and nothing more. The map might be altered and appended as more information becomes available, but the hardcopy map is the final product with a single purpose.

Digital mapping can do this and more. Computerized tools help collect and interact with the map data. This data is used to make maps, but it can also be analyzed to create new data or produce statistical summaries. The same geographic data can be applied to several different mapping projects. The ability to render the same information without compiling new field notes or tracing a paper copy makes digital mapping more efficient and more fun.

Digital mapping applies computer-assisted techniques to a wide range of tasks that traditionally required large amounts of manual labor. The tasks that were performed are no different than those of the modern map maker, though the approach and tools vary greatly. Figure 2-1 shows a conceptual diagram of the digital mapping process.

Digital maps are made using a mapping program that accesses mapping data and gives the resulting map back to the user
Figure 2-1. Digital maps are made using a mapping program that accesses mapping data and gives the resulting map back to the user