Table of Contents for
Python Web Penetration Testing Cookbook

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Python Web Penetration Testing Cookbook by Dave Mound Published by Packt Publishing, 2015
  1. Cover
  2. Table of Contents
  3. Python Web Penetration Testing Cookbook
  4. Python Web Penetration Testing Cookbook
  5. Credits
  6. About the Authors
  7. About the Reviewers
  8. www.PacktPub.com
  9. Disclamer
  10. Preface
  11. What you need for this book
  12. Who this book is for
  13. Sections
  14. Conventions
  15. Reader feedback
  16. Customer support
  17. 1. Gathering Open Source Intelligence
  18. Gathering information using the Shodan API
  19. Scripting a Google+ API search
  20. Downloading profile pictures using the Google+ API
  21. Harvesting additional results from the Google+ API using pagination
  22. Getting screenshots of websites with QtWebKit
  23. Screenshots based on a port list
  24. Spidering websites
  25. 2. Enumeration
  26. Performing a ping sweep with Scapy
  27. Scanning with Scapy
  28. Checking username validity
  29. Brute forcing usernames
  30. Enumerating files
  31. Brute forcing passwords
  32. Generating e-mail addresses from names
  33. Finding e-mail addresses from web pages
  34. Finding comments in source code
  35. 3. Vulnerability Identification
  36. Automated URL-based Directory Traversal
  37. Automated URL-based Cross-site scripting
  38. Automated parameter-based Cross-site scripting
  39. Automated fuzzing
  40. jQuery checking
  41. Header-based Cross-site scripting
  42. Shellshock checking
  43. 4. SQL Injection
  44. Checking jitter
  45. Identifying URL-based SQLi
  46. Exploiting Boolean SQLi
  47. Exploiting Blind SQL Injection
  48. Encoding payloads
  49. 5. Web Header Manipulation
  50. Testing HTTP methods
  51. Fingerprinting servers through HTTP headers
  52. Testing for insecure headers
  53. Brute forcing login through the Authorization header
  54. Testing for clickjacking vulnerabilities
  55. Identifying alternative sites by spoofing user agents
  56. Testing for insecure cookie flags
  57. Session fixation through a cookie injection
  58. 6. Image Analysis and Manipulation
  59. Hiding a message using LSB steganography
  60. Extracting messages hidden in LSB
  61. Hiding text in images
  62. Extracting text from images
  63. Enabling command and control using steganography
  64. 7. Encryption and Encoding
  65. Generating an MD5 hash
  66. Generating an SHA 1/128/256 hash
  67. Implementing SHA and MD5 hashes together
  68. Implementing SHA in a real-world scenario
  69. Generating a Bcrypt hash
  70. Cracking an MD5 hash
  71. Encoding with Base64
  72. Encoding with ROT13
  73. Cracking a substitution cipher
  74. Cracking the Atbash cipher
  75. Attacking one-time pad reuse
  76. Predicting a linear congruential generator
  77. Identifying hashes
  78. 8. Payloads and Shells
  79. Extracting data through HTTP requests
  80. Creating an HTTP C2
  81. Creating an FTP C2
  82. Creating an Twitter C2
  83. Creating a simple Netcat shell
  84. 9. Reporting
  85. Converting Nmap XML to CSV
  86. Extracting links from a URL to Maltego
  87. Extracting e-mails to Maltego
  88. Parsing Sslscan into CSV
  89. Generating graphs using plot.ly
  90. Index

Cracking an MD5 hash

Since MD5 is a method of encryption and is publicly available, it is possible to create a hash collision by using common methods of cracking hashes. This in turn "cracks" the hash and returns to you the value of the string before it had been put through the MD5 process. This is achieved most commonly by a "dictionary" attack. This consists of running a list of words through the MD5 encoding process and checking whether any of them are a match against the MD5 hash you are trying to crack. This works because MD5 hashes are always the same if the same word is hashed.

Getting ready

For this script, we will only need the hashlib module.

How to do it…

To start cracking the MD5 hashes, we need to load a file containing a list of words that will be encrypted in MD5. This will allow us to loop through the hashes and check whether we have a match:

import hashlib
target = raw_input("Please enter your hash here: ")
dictionary = raw_input("Please enter the file name of your dictionary: ")
def main():
    with open(dictionary) as fileobj:
        for line in fileobj:
            line = line.strip()
            if hashlib.md5(line).hexdigest() == target:
                print "Hash was successfully cracked %s: The value is %s" % (target, line)
                return ""
    print "Failed to crack the file."
if __name__ == "__main__":
    main()

How it works…

We first start by loading the module into Python as normal:

import hashlib

We need user input for both the hash we would like to crack and also the name of the dictionary we are going to load to crack against:

target = raw_input("Please enter your hash here: ")
dictionary = raw_input("Please enter the file name of your dictionary: ")

Once we have the hash we would like to crack and the dictionary, we can continue with the encoding. We need to open the dictionary file and encode each string, one by one. We can then check to see whether any of the hashes match the original one we are aiming to crack. If there is a match, our script will then inform us and give us the value:

def main():
    with open(dictionary) as fileobj:
        for line in fileobj:
            line = line.strip()
            if hashlib.md5(line).hexdigest() == target:
                print "Hash was successfully cracked %s: The value is %s" % (target, line)
                return ""
    print "Failed to crack the file."

Now all that's left to do is run the program:

if __name__ == "__main__":
    main()

Now let's have a look at the script in action:

Please enter your hash here: 5f4dcc3b5aa765d61d8327deb882cf99
Please enter the file name of your dictionary: dict.txt
Hash was successfully cracked 5f4dcc3b5aa765d61d8327deb882cf99: The value is password