Table of Contents for
Python Web Penetration Testing Cookbook

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Python Web Penetration Testing Cookbook by Dave Mound Published by Packt Publishing, 2015
  1. Cover
  2. Table of Contents
  3. Python Web Penetration Testing Cookbook
  4. Python Web Penetration Testing Cookbook
  5. Credits
  6. About the Authors
  7. About the Reviewers
  8. www.PacktPub.com
  9. Disclamer
  10. Preface
  11. What you need for this book
  12. Who this book is for
  13. Sections
  14. Conventions
  15. Reader feedback
  16. Customer support
  17. 1. Gathering Open Source Intelligence
  18. Gathering information using the Shodan API
  19. Scripting a Google+ API search
  20. Downloading profile pictures using the Google+ API
  21. Harvesting additional results from the Google+ API using pagination
  22. Getting screenshots of websites with QtWebKit
  23. Screenshots based on a port list
  24. Spidering websites
  25. 2. Enumeration
  26. Performing a ping sweep with Scapy
  27. Scanning with Scapy
  28. Checking username validity
  29. Brute forcing usernames
  30. Enumerating files
  31. Brute forcing passwords
  32. Generating e-mail addresses from names
  33. Finding e-mail addresses from web pages
  34. Finding comments in source code
  35. 3. Vulnerability Identification
  36. Automated URL-based Directory Traversal
  37. Automated URL-based Cross-site scripting
  38. Automated parameter-based Cross-site scripting
  39. Automated fuzzing
  40. jQuery checking
  41. Header-based Cross-site scripting
  42. Shellshock checking
  43. 4. SQL Injection
  44. Checking jitter
  45. Identifying URL-based SQLi
  46. Exploiting Boolean SQLi
  47. Exploiting Blind SQL Injection
  48. Encoding payloads
  49. 5. Web Header Manipulation
  50. Testing HTTP methods
  51. Fingerprinting servers through HTTP headers
  52. Testing for insecure headers
  53. Brute forcing login through the Authorization header
  54. Testing for clickjacking vulnerabilities
  55. Identifying alternative sites by spoofing user agents
  56. Testing for insecure cookie flags
  57. Session fixation through a cookie injection
  58. 6. Image Analysis and Manipulation
  59. Hiding a message using LSB steganography
  60. Extracting messages hidden in LSB
  61. Hiding text in images
  62. Extracting text from images
  63. Enabling command and control using steganography
  64. 7. Encryption and Encoding
  65. Generating an MD5 hash
  66. Generating an SHA 1/128/256 hash
  67. Implementing SHA and MD5 hashes together
  68. Implementing SHA in a real-world scenario
  69. Generating a Bcrypt hash
  70. Cracking an MD5 hash
  71. Encoding with Base64
  72. Encoding with ROT13
  73. Cracking a substitution cipher
  74. Cracking the Atbash cipher
  75. Attacking one-time pad reuse
  76. Predicting a linear congruential generator
  77. Identifying hashes
  78. 8. Payloads and Shells
  79. Extracting data through HTTP requests
  80. Creating an HTTP C2
  81. Creating an FTP C2
  82. Creating an Twitter C2
  83. Creating a simple Netcat shell
  84. 9. Reporting
  85. Converting Nmap XML to CSV
  86. Extracting links from a URL to Maltego
  87. Extracting e-mails to Maltego
  88. Parsing Sslscan into CSV
  89. Generating graphs using plot.ly
  90. Index

Generating a Bcrypt hash

One of the less commonly used, yet more secure hash functions, is Bcrypt. Bcrypt hashes were designed to be slow when encrypting and decrypting hashes. This design was used to prevent hashes from being easily cracked if hashes got leaked to the public, for example from a database exposure.

Getting ready

For this script, we will be using the bcrypt module within Python. This can be installed by using either pip or easy_install, albeit you will want to ensure version 0.4 is installed and not version 1.1.1, as version 1.1.1 removes some functionality from the Bcrypt module.

How to do it…

Generating Bcrypt hashes within Python is similar to generating other hashes such as SHA and MD5, but also slightly different. Like the other hashes, we can either prompt the user for a password or hard-code it into the script. The hashing in Bcrypt is more complex due to the use of randomly generated salts, which get appended to the original hash. This increases the complexity of the hash and therefore increases the security of the password stored within the hash function.

This script also has a checking module at the end, which relates to a real-world example. It requests the user to re-enter the password they want to hash and ensures that it matches the original input. Password confirmation is a very common practice among many developers and in the modern age, nearly every registration form uses this:

import bcrypt
# Let's first enter a password
new = raw_input('Please enter a password: ')
# We'll encrypt the password with bcrypt with the default salt value of 12
hashed = bcrypt.hashpw(new, bcrypt.gensalt())
# We'll print the hash we just generated
print('The string about to be stored is: ' + hashed)
# Confirm we entered the correct password
plaintext = raw_input('Please re-enter the password to check: ')
# Check if both passwords match
if bcrypt.hashpw(plaintext, hashed) == hashed:
    print 'It\'s a match!'
else:
    print 'Please try again.'

How it works…

We start the script off by importing the required module. In this case, we only need the bcrypt module:

import bcrypt

We can then request the input from the user by using the standard raw_input method:

new = raw_input('Please enter a password: ')

After we have the input, we can get down to the nitty gritty hashing methods. To begin with, we use the bcrypt.hashpw function to hash the input. We then give it the value of the inputted password and then also randomly generate a salt, using bcrypt.gensalt(). This can be achieved by using:

hashed = bcrypt.hashpw(new, bcrypt.gensalt())

We then print the hashed value out to the user, so they can see the hash that has been generated:

print ('The string about to be stored is: ' + hashed)

Now, we start the password confirmation. We have to prompt the user for the password again so that we can confirm that they entered it correctly:

plaintext = raw_input('Please re-enter the password to check: ')

Once we have the password, we check whether both passwords match by using the == feature within Python:

If bcrypt.hashpw(plaintext, hashed) == hashed:
  print "It\'s a match"
else:
  print "Please try again".

We can see the script in action as follows:

Please enter a password: example
The string about to be stored is: $2a$12$Ie6u.GUpeO2WVjchYg7Pk.741gWjbCdsDlINovU5yubUeqLIS1k8e
Please re-enter the password to check: example
It's a match!

Please enter a password: example
The string about to be stored is: $2a$12$uDtDrVCv2vqBw6UjEAYE8uPbfuGsxdYghrJ/YfkZuA7vaMvGIlDGe
Please re-enter the password to check: incorrect
Please try again.