Table of Contents for
Hands-On Cryptography with Python

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Hands-On Cryptography with Python by Samuel Bowne Published by Packt Publishing, 2018
  1. Hands-On Cryptography with Python
  2. Title Page
  3. Copyright and Credits
  4. Hands-On Cryptography with Python
  5. Packt Upsell
  6. Why subscribe?
  7. PacktPub.com
  8. Contributor
  9. About the author
  10. Packt is searching for authors like you
  11. Table of Contents
  12. Preface
  13. Who this book is for
  14. What this book covers
  15. To get the most out of this book
  16. Download the example code files
  17. Download the color images
  18. Conventions used
  19. Get in touch
  20. Reviews
  21. Obfuscation
  22. About cryptography
  23. Installing and setting up Python
  24. Using Python on Mac or Linux
  25. Installing Python on Windows
  26. Caesar cipher and ROT13
  27. Implementing the Caesar cipher in Python
  28. ROT13
  29. base64 encoding
  30. ASCII data
  31. Binary data
  32. XOR
  33. Challenge 1 – the Caesar cipher
  34. Challenge 2 – base64
  35. Challenge 3 – XOR
  36. Summary
  37. Hashing
  38. MD5 and SHA hashes
  39. What are hashes?
  40. Windows password hashes
  41. Getting hashes with Cain
  42. MD4 and Unicode
  43. Cracking hashes with Google
  44. Cracking hashes with wordlists
  45. Linux password hashes
  46. Challenge 1 – cracking Windows hashes
  47. Challenge 2 – cracking many-round hashes
  48. Challenge 3 – cracking Linux hashes
  49. Summary
  50. Strong Encryption
  51. Strong encryption with AES
  52. ECB and CBC modes
  53. ECB
  54. CBC
  55. Padding oracle attack
  56. Strong encryption with RSA
  57. Public key encryption
  58. RSA algorithm
  59. Implementation in Python
  60. Challenge – cracking RSA with similar factors
  61. Large integers in Python
  62. What's next?
  63. Cryptography within IoT
  64. ZigBee cryptographic keys
  65. Complexity of ZigBee key management
  66. Bluetooth – LE
  67. Summary
  68. Other Books You May Enjoy
  69. Leave a review - let other readers know what you think

Caesar cipher and ROT13

In this section, we will explain what a Caesar cipher is and how to implement it in Python. Then, we will consider other shift values, modular arithmetic, and ROT13.

A Caesar cipher is an ancient trick where you just move every letter forward three characters in the alphabet. Here is an example:

  • Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
  • Ciphertext: DEFGHIJKLMNOPQRSTUVWXYZABC

So, HELLO becomes KHOOR.

To implement it, we're going to use the string.find() method. The interactive mode of Python is good for testing new methods, hence it's easy to create a string. You can make a very simple script to implement the Caesar cipher with a string named alpha for alphabet. You can then take input from the user, which is the plaintext method, then set a value, n, which equals the length of the string, and the string out is equal to an empty string. We then have a loop that goes through n repetitions, finding the character from string in and then finding the location of that character in the alpha string. It then prints out those three values so that we can make sure that the script is working correctly, then it adds 3 to loc (location) and puts the corresponding character in string out, and again prints out partial values so that we can see that the script is working correctly. At the end, we print our final output. Adding extra print statements is a very good way to begin your programming because you can detect mistakes.