Index

A

Adaptive control, 9
MRAC ( see Model Reference Adaptive Control (MRAC))
self tuning
modeling an oscillator, 110–111
tuning an oscillator, 112–116
ship steering, 126–130
spacecraft pointing, 130–133
square wave, 121–122
Artificial intelligence (AI)
back propagation, 319
Bayesian network, 320
Blocks World, 318
chess programs, 319, 320
Cybernetics, 317
definition of, 16
expert systems, 17
Google translate, 320
GPS, 318
Hidden Markov Models, 319–320
intelligent cars, 16–17
knowledge-based systems, 319
limitations, 319
Lisp, 318
LT, 317–318
military organizations, 323
neural networks, 317
timeline of, 320
time sharing, 318–319
Towers of Hanoi, 318
Automobile animation, 299–302
Automobile demo
car trajectories, 307
final tree, 309
radar measurement, 308
Automobile dynamics
planar model, 293–294
RungeKutta, 292
vehicle states, 292
wheel force and torque, 294–295
AutomobilePassing, 297–299
Automobile radar, 295–297
Automobile simulation
Kalman Filter, 303–306
snap shots, 302
Automobile target tracking, 306–309
Automobile 3D model, 300
Autonomous driving, 323
automobile animation, 299–302
automobile dynamics, 292–295
AutomobilePassing, 297–299
automobile radar, 295–297
automobile simulation and Kalman Filter, 303–306
technology, 16
Autonomous learning
AI, 317–320
categories of, 7–8
learning control, 320–322
machine learning, 322–323
software, 325–326
AutoRadar function, 296

B

Bayesian network, 17, 320
Bayes theorem, 322
Billiard ball Kalman filter, 274–279
Binary decision trees
autonomous learning taxonomy, 147
box data structure fields, 162
child boxes, 161
classification error, 156
ClassifierSet, 148–151
distinct values, 158
entropy, 156
FindOptimalAction, 159
fminbnd, 159
Gini impurity, 155, 156
homogeneity measure, 156–158
IG, 155
MATLAB function patch, 150
parent/child nodes, 159
PointInPolygon, 149
testing data, 148, 165–168
training, 160–162, 167–168
Blocks World, 318

C

Case-based expert systems
autonomous learning taxonomy, 311
building, 312–313
functions and scripts, 316
running
BuildExpertSystem, 314–316
CBREngine, 313
ExpertSystemDemo, 314
fprintf, 316
strcmpi, 313–314
catColorReducer, 34
Cat images
grayscale photographs, 211
ImageArray, 212–213
ScaleImage, 214–215
64x64 pixel, 213
Cell arrays, 20–21
Chapman–Kolmogorov equation, 83
Cholesky factorization, 102
C Language Integrated Production System (CLIPS), 319, 332–333
Classification tree, 13
Comma-Separated Lists, 20–21
Commercial software
MathWorks products, 326–328
PSS products, 328–329
Computer Vision System Toolbox, 327
ConnectNode, 51
Convolution process, 216
deep learning, 210
layers, 210
stages, 225
Core Control Toolbox, 328
CVX, 332
Cybernetics, 317

D

Damped oscillator, 114
Data mining, 323
Datastores
functions, 26
properties, 25
Data structures, 21–22
parameters, 30–33
Daylight detector, 171–173
Decision trees, 13–14
Deep learning, 14, 328
convolutional neural net, 210
neural net, 209
Deep Learn Toolbox, 329
Deep Neural Network, 329
Digits
CreateDigitImage function, 188–190
DigitTrainingData, 190–192
feed-forward neural network, 195
grayscale, conversion, 189
GUI, 192
MLFF neural network function, 193
multiple outputs
MAT-file, 206
multiple-digit neural net, 205–207
training data, 204
NeuralNetDeveloper tool, 192
NeuralNetMLFF, 196–197
NeuralNetTraining, 196
Neuron activation functions, 192–195
Poisson or shot noise, 188
SaveTS function, 190
single output node
default parula map, 200
Digit0FontsTS, 197–198
NeuralNetTrainer, 200
node weights, 202
RMSE, 198, 200
sigmoid function, 197
single digit training error, 200
testing, 202–203
DrawBinaryTree
cell array, 152
data structure, 151
DefaultDataStructure, 154
demo, 155
DrawBox, 152
lines, 153
patch function, 152
resize rows, 152–153
RGB numbers, 152
sprintf, 154
text function, 152
DrawNode, 51
dynamicExpression, 22

E

Euler integration, 94
Extended Kalman Filter (EKF), 92–97

F

Fact-gathering, 311–312
Fast Fourier Transform (FFT), 9, 35, 110
FFTEnergy, 112
Filter covariances, 278
Filter errors, 279, 287
Flexible Image Transport System (FITS), 23
F-16 model, aircraft, 237–238
FORTRAN, XVII, 318
Frequency spectrum, 114
without noise, 115
Function PlotSet, XVIII–XIX
Fuzzy logic
AND and OR, 141
BuildFuzzySystem, 137–138
Defuzzify, 142
description, 135
Fire, 141
Fuzzify, 140–141
MATLAB data structure, 136
membership functions, 138–139
set structure, 137
smart wipers
rain wetness and intensity, 144, 145
wiper speed and interval, 144
wiper speed and interval vs. droplet frequency and wetness, 145

G

Gaussian membership function, 138
General bell function, 138
General Problem Solver (GPS), 318
GNU Linear Programming Kit (GLPK), XIX, 328, 331
Google translate, 320
Graphical user interface (GUI), 45, 280
blank, 60
inspector, 61
snapshot
editing window, 62
simulation, 63, 64
GraphicConverter application, 214
Graphics
animation, bar chart, 63–67
building GUI, 58–63
custom two-dimensional diagrams, 50–51
general 2D, 48–49
three-dimensional box, 51–54
3D graphics, 56–58
3D object with texture, 54–56
2D line plots, 45–47

H

Hidden Markov Models (HMM), 82, 319–320

I, J

Images
display options, 24
formats, 23
functions, 25
information, 23–24
Inclined plane, 2
Information gain (IG), 155
Interactive multiple model systems (IMMs), 329

K

Kalman Filters, 8
automobile simulation, 303–306
Chapman–Kolmogorov equation, 83
Cholesky factorization, 102
derivation, 80
Euler integration, 94
extended, angle measurement, 97
family tree, 81
HMM, 82
implementation, 87
linear, 74–92
Monte Carlo methods, 80–81
noise matrix, 91, 92
normal/Gaussian random variable, 82
OscillatorDamping RatioSim, 76
OscillatorSim, 78
parameter estimation, UKF, 104–107
RHSOscillator, 78
Spring-mass-damper system, 75, 77, 79
state estimation
EKF, 92–97
linear, 74–92
UKF, 97–103
undamped natural frequency, 76
Kernel function, 15
Knowledge-based systems, 17, 319

L

Large MAT-files, 29
Learning control, aircraft, 320–322
dynamic pressure, 245
Kalman Filter, 247
least squares solution, 245
longitudinal dynamics, 261–264
neural net, 243
PID controller, 244
pinv function, 245
recursive learning algorithm, 246, 247
sigma-pi neural net, 243, 244
LIBSVM, 330
Linear Kalman Filter, 74–92
Linear regression, 12
Lisp, 318
Logic Theorist (LT), 317–318
Log-likelihood ratio, 269–270
Longitudinal control, aircraft, 231
differential equations, 235
drag polar, 233
dynamics symbols, 233–234
F-16 model, 237–238
learning approach, 232
longitudinal dynamics, 232, 233
Oswald efficiency factor, 234
RHSAircraft, 235–236
sigma-pi type network, 232–233
training algorithm, 233
LOQO, 331

M

Machine learning
AI, 322
autonomous driving, 323
Bayes theorem, 322
concept of learning, 4–6
data mining, 323
definition of, 2
elements
data, 2
models, 3
training, 3
examples, XVII
feedback control, 8–9
FORTRAN, XVII
SVMs, 323
taxonomy, 6–8
Mapreduce
datastore, 33–35
framework, 26
progress, 35
valueIterator class, 34
MatConvNet, 329
MAT-file function, 29
MathWorks products
Computer Vision System Toolbox, 327
Deep Learning, 328
Neural Network Toolbox, 327
Statistics and Machine Learning Toolbox, 326–327
System Identification Toolbox, 327
MATLAB toolbox
functions, XVIII
html help, XVIII
scripts, XVIII
Matrices, 19–20
Membership functions, fuzzy logic
Gaussian, 138
general bell, 138
sigmoidal, 138
trapezoid, 138
triangular, 138
MEX files, 333–335
Mixed integer linear program (MILP), 272
Model Reference Adaptive Control (MRAC)
implementation, 117–121
rotor, 123–125
Monte Carlo methods, 80–81
Multi-layer feed-forward (MLFF), 14, 193
Multiple hypothesis testing (MHT), 269
estimated states, 289
GUI, 283, 308
information window, 284
measurement and gates, 271
object states, 287, 289
testing parameters, 282
tree, 284

N

Nelder–Meade simplex, 229
Neural aircraft control
activation function, 242–243
Combination function, 248–249
equilibrium state, 238–240
learning control ( see Learning control, aircraft)
longitudinal dynamics simulation, 232
nonlinear simulation, 261–264
numerical simulation, 240–242
pitch angle, PID controller, 256–258
sigma-pi net neural function, 249–251
Neural networks/nets, 14–15
convolution layer, 217–218
daylight detector, 171–173
description, 171
fully connected layer, 220–222
image processing, 224
image recognition, 228–230
matrix convolution, 215–217
number recognition, 225–228
pendulum ( see Pendulum)
pitch dynamics, 258–261
pooling to outputs, 218–220
probability determination, 222–223
single neuron angle estimator, 177–181
testing, 223–225
training image generation, 211–215
Neural Network Toolbox, 327
New track measurements, 268
Nonlinear simulation, aircraft control, 261–264
Non-MATLAB products
LIBSVM, 330
R, 330
scikit-learn, 330
Normal/Gaussian random variable, 82
Numerics, 23

O

One-dimensional motion, MHT, 285–287
track association, 287–289
Online learning, 4
Open source resources
Deep Learn Toolbox, 329
Deep Neural Network, 329
MatConvNet, 329
Optimization tools
CVX, 332
GLPK, 331
LOQO, 331
SeDuMi, 332
SNOPT, 331
YALMIP, 332
OscillatorDamping RatioSim, 76–77
OscillatorSim, 78

P, Q

Parallel Computing Toolbox, 26, 33, 327
patch function, 50, 52, 54
Pattern recognition, 187
Pendulum
activation function, 183
dynamics, 173
linear equations, 175, 177
magnitude oscillation, 185–186
NeuralNetMLFF, 182–184
NeuralNetTraining, 182
NNPendulumDemo, 182
nonlinear equations, 177
PendulumSim, 176
RungeKutta integration, 174, 175
Taylor’s series expansion, 175
torque, 174
xDot, 176
Perceptrons, 319
Pitch angle, PID controller, 256–258
Pitch dynamics, 231
neural net, 258–261
Planar automobile dynamical model, 293
PlotSet function, 46, 47
plotXY function, 47
Pluto, 3D globe, 55
Princeton Satellite Systems (PSS) products
Core Control Toolbox, 328
Target Tracking, 328–329
Processing table data, 37–41
Proportional integral derivative (PID) controller
closed loop transfer function, 253
coding, 254–255
derivative operator, 253
design, 254
double integrator equations, 255
feedback controller, 252
nonlinear inversion controller, 258
pitch angle, 251, 256–258
recursive training, 252

R

R, 330
Recursive learning algorithm, 246, 247
Regression, 10–13
RHSAircraft, 240
RHSOscillator, 78
Riccati equation, 128
Root mean square error (RMSE), 198, 200, 205
Rotor, MRAC
gain convergence, 125
RungeKutta, 123–124
speed control, 117
SquareWave, 123
Rule-based expert systems, 311, 312
RungeKutta, 240

S

SCARA robot, 69, 70
scikit-learn, 330
Second-order system, 58, 59
SeDuMi, 332
Semi-supervised learning, 4
Ship steering
gains and rudder angle, 129
Gaussian white noise, 130
heading control, 126
parameters, 127
Riccati equation, 128–129
ShipSim, 127
Sigma-pi neural net function, 243, 244, 248–251
Sigmoidal membership function, 138
Sigmoid function, 242
Simple binary tree, 147–148
Simple machines, 2
Single neuron angle estimator
activation functions, 178–179
linear estimator, 177
OneNeuron, 180
tanh neuron output, 181
SNOPT, 331
Softmax function, 222
Software
autonomous learning, 325–326
commercial MATLAB, 326–329
expert systems, 332–333
MATLAB MEX files, 333–335
MATLAB open source resources, 329
non-MATLAB products, 329–330
optimization tools, 330–332
Solar flux, 172
Spacecraft model, 131
Spacecraft simulation, 133
Sparse matrices, 27, 28
sphere function, 55
Spring-mass-damper system, 75, 77, 79, 111
Spurious measurement, tracking, 267
Square wave, 122
Statistics and Machine Learning Toolbox, 326–327
Strings
arrays of, 41
concatenation, 41
substrings, 42
Supervised learning, 3
Support vector machines (SVMs), 15, 323
Synonym set, 211
System Identification Toolbox, 327

T

Table creation, FFTs, 35–37
Tables and categoricals, 27–28
TabularTextDatastore, 38–41
Tall arrays, 26–27
Target Tracking, 328–329
Towers of Hanoi, 318
Tracking
algorithm, 269–270
definition of, 265
hypothesis formation, 271–272
measurements, 269
assignment, 270–271
new track, 268
spurious, 267
valid, 268
problem, 268
track pruning, 272–273
Track-oriented multiple hypothesis testing (MHT), 17, 265, 266, 328
Trapezoid membership function, 138
Tree diagrams, graphics functions, 50
Triangular membership function, 138
Two by three bar chart, 65, 67
2D plot types, 48–49

U

Undamped natural frequency, 76
Unscented Kalman Filter (UKF), 8, 303
non-augmented Kalman Filter, 97–103
parameter estimation, 104–107
true and estimated states, 305
Unsupervised learning, 4

V, W, X

Valid measurements, tracking, 268
varargin, 30–32, 46

Y, Z

YALMIP, 332