Table of Contents for
Drupal 8 Module Development

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Drupal 8 Module Development by Daniel Sipos Published by Packt Publishing, 2017
  1. Drupal 8 Module Development
  2. Title Page
  3. Copyright
  4. Drupal 8 Module Development
  5. Credits
  6. About the Author
  7. About the Reviewers
  8. www.PacktPub.com
  9. Why subscribe?
  10. Customer Feedback
  11. Table of Contents
  12. Preface
  13. What this book covers
  14. What you need for this book
  15. Who this book is for
  16. Conventions
  17. Reader feedback
  18. Customer support
  19. Downloading the example code
  20. Downloading the color images of this book 
  21. Errata
  22. Piracy
  23. Questions
  24. Developing for Drupal 8
  25. Introducing Drupal (for developers)
  26. Developing for Drupal 8
  27. Technologies that drive Drupal
  28. PHP
  29. Databases and MySQL
  30. The web server
  31. HTML, CSS, and JavaScript
  32. Drupal architecture
  33. Drupal core, modules, and themes
  34. Hooks, plugins, and events
  35. Services and the dependency injection container
  36. From request to response
  37. Drupal's major subsystems
  38. Routing
  39. Entities
  40. Fields
  41. Menus
  42. Views
  43. Forms
  44. Configuration
  45. Plugins
  46. The theme system
  47. Caching
  48. Other subsystems
  49. Tools for developing in Drupal
  50. Version control
  51. Composer
  52. The API site and coding standards
  53. The developer (Devel) module
  54. Drush (the Drupal shell)
  55. Drupal Console
  56. Developer settings
  57. Summary
  58. Creating Your First Module
  59. Creating a module
  60. Your first hook implementation
  61. Route and controller
  62. The route
  63. Route variables
  64. Namespaces
  65. The Controller
  66. Services
  67. What is a service?
  68. The HelloWorldSalutation service
  69. Tagged services
  70. Using services in Drupal 8
  71. Injecting the service into our Controller
  72. The form
  73. Altering forms
  74. Custom submit handlers
  75. Rendering forms
  76. Service dependencies
  77. Blocks
  78. Our first block plugin
  79. Block configuration
  80. Working with links
  81. The URL
  82. The link
  83. Which way to link?
  84. Event Dispatcher and redirects
  85. Redirecting from a Controller
  86. Redirecting from a subscriber
  87. Dispatching events
  88. Summary
  89. Logging and Mailing
  90. Logging
  91. The Drupal 8 logging theory
  92. Our own logger channel
  93. Our own logger
  94. Logging for Hello World
  95. Logging summary
  96. Mail API
  97. The theory of the Mail API
  98. Implementing hook_mail()
  99. Sending emails
  100. Altering someone else's emails
  101. Custom mail plugins
  102. The mail plugin
  103. Using mail plugins
  104. Tokens
  105. The Token API
  106. Using tokens
  107. Defining new tokens
  108. Token summary
  109. Summary
  110. Theming
  111. Business logic versus presentation logic
  112. Twig
  113. Theme hooks
  114. Theme hook suggestions
  115. Render arrays
  116. The structure of a render array
  117. #type
  118. #theme
  119. #markup
  120. The render pipeline
  121. Assets and libraries
  122. Libraries
  123. Attaching libraries
  124. Common theme hooks
  125. Lists
  126. Links
  127. Tables
  128. Attributes
  129. Theming our Hello World module
  130. Summary
  131. Menus and Menu Links
  132. The menu system
  133. Menus
  134. Menu links
  135. Multiple types of menu links
  136. Local tasks
  137. Local actions
  138. Contextual links
  139. MenuLink trees
  140. Menu link tree manipulators
  141. Menu active trail
  142. Rendering menus
  143. Working with menu links
  144. Defining menu links
  145. Working with menu links
  146. Defining local tasks
  147. Defining local actions
  148. Defining contextual links
  149. Summary
  150. Data Modeling and Storage
  151. Different types of data storage
  152. State API
  153. Tempstore
  154. PrivateTempStore
  155. A note about anonymous users
  156. SharedTempStore
  157. Tempstore conclusion
  158. UserData
  159. Configuration
  160. Introduction
  161. What is configuration used for?
  162. Managing configuration
  163. Different types of configuration
  164. Configuration storage
  165. Schema
  166. Overrides
  167. Global overrides
  168. Module overrides
  169. Language overrides
  170. Priority
  171. Interacting with simple configuration
  172. Entities
  173. Content versus configuration entity types
  174. Entity type plugins
  175. Identifiers
  176. Bundles
  177. Database tables
  178. Entity keys
  179. Links
  180. Entity translation
  181. Entity revisions
  182. Configuration export
  183. Handlers
  184. Fields
  185. Configuration entity fields
  186. Content entity fields
  187. Base fields
  188. Configurable fields
  189. Field storage
  190. Entity types summary
  191. TypedData
  192. Why?
  193. What?
  194. The low-level API
  195. DataType plugins
  196. Data definitions
  197. Content entities
  198. TypedData summary
  199. Interacting with the Entity API
  200. Querying and loading entities
  201. Building queries
  202. Loading entities
  203. Reading entities
  204. Manipulating entities
  205. Creating entities
  206. Rendering content entities
  207. Pseudo-fields
  208. Content entity validation
  209. Validation summary
  210. Summary
  211. Your Own Custom Entity and Plugin Types
  212. Custom content entity type
  213. Custom plugin type
  214. Custom configuration entity type
  215. The Importer plugin
  216. Content entity bundles
  217. Drush command
  218. Summary
  219. The Database API
  220. The Schema API
  221. Running queries
  222. Select queries
  223. Handling the result
  224. More complex select queries
  225. Range queries
  226. Pagers
  227. Insert queries
  228. Update queries
  229. Delete queries
  230. Transactions
  231. Query alters
  232. Update hooks
  233. Summary
  234. Custom Fields
  235. Field type
  236. Field widget
  237. Field formatter
  238. Field settings
  239. Using as a base field
  240. Summary
  241. Access Control
  242. Introduction to the Drupal access system
  243. Roles and permissions under the hood
  244. Defining permissions
  245. Checking the user credentials
  246. Route access
  247. Custom route access
  248. Static approach
  249. Service approach
  250. Programmatically checking access on routes
  251. Bonus - dynamic route options for access control
  252. CSRF protection on routes
  253. Altering routes
  254. Entity access
  255. Injecting services into Entity handlers
  256. Entity access hooks
  257. Field access
  258. Entity access in routes
  259. Node access grants
  260. Block access
  261. Summary
  262. Caching
  263. Introduction
  264. Cacheability metadata
  265. Cache tags
  266. Cache contexts
  267. Max-age
  268. Using the cache metadata
  269. Caching in block plugins
  270. Caching access results
  271. Placeholders and lazy building
  272. Lazy builders
  273. Using the Cache API
  274. Creating our own cache bin
  275. Summary
  276. JavaScript and the Ajax API
  277. JavaScript in Drupal
  278. Drupal behaviors
  279. Our library
  280. The JavaScript
  281. Drupal settings
  282. Ajax API
  283. Ajax links
  284. Ajax in forms
  285. States (Form) system
  286. Summary
  287. Internationalization and Languages
  288. Introduction
  289. Language
  290. Content Translation
  291. Configuration Translation
  292. Interface Translation
  293. Internationalization
  294. Content entities and the Translation API
  295. Summary
  296. Batches, Queues, and Cron
  297. Batch powered update hooks
  298. Batch operations
  299. Creating the batch
  300. Batch operations
  301. Cron
  302. Queues
  303. Introduction to the Queue API
  304. Cron based queue
  305. Processing a queue programmatically
  306. Lock API
  307. Summary
  308. Views
  309. Entities in Views
  310. Exposing custom data to Views
  311. Views data
  312. Views fields
  313. Views relationships
  314. Views sorts and filters
  315. Views arguments
  316. Altering Views data
  317. Custom Views field
  318. Field configuration
  319. Custom Views filter
  320. Custom Views argument
  321. Views theming
  322. Views hooks
  323. Summary
  324. Working with Files and Images
  325. The filesystem
  326. Stream wrappers
  327. Managed versus unmanaged files
  328. Using the File and Image fields
  329. Working with managed files
  330. Attaching managed files to entities
  331. Helpful functions for dealing with managed files
  332. Managed file uploads
  333. Managed file form element
  334. Entity CRUD hooks
  335. Managed file usage service
  336. Processing the CSV file
  337. Our own stream wrapper
  338. Working with unmanaged files
  339. Private file system
  340. Images
  341. Image toolkits
  342. Image styles
  343. Rendering images
  344. Summary
  345. Automated Testing
  346. Testing methodologies in Drupal 8
  347. PHPUnit
  348. Registering tests
  349. Unit tests
  350. Mocked dependencies
  351. Kernel tests
  352. TeamCleaner test
  353. CsvImporter test
  354. Functional tests
  355. Configuration for functional tests
  356. Hello World page test
  357. Hello World form test
  358. Functional JavaScript tests
  359. Time test
  360. CsvImporter test
  361. Summary
  362. Drupal 8 Security
  363. Cross-Site Scripting (XSS)
  364. Sanitization methods in Drupal 8
  365. Double escaping
  366. SQL Injection
  367. Cross-Site Request Forgery (CSRF)
  368. Summary

Using the Cache API

So far in this chapter, we mostly preoccupied ourselves with render arrays and how we can expose them to the Cache API for better performance. It's now time to talk a bit about how cache entries are stored by default in Drupal and how we can interact with them ourselves in our code.

As mentioned earlier, a central interface for the cache system is the CacheBackendInterface, which is the interface any caching system needs to implement. It basically provides the methods for creating, reading, and invalidating cache entries.

As we might expect, when we want to interact with the Cache API, we use a service to retrieve an instance of the CacheBackendInterface. However, the service name we use depends on the cache bin we want to work with. Cache bins are repositories that group together cache entries based on their type. So, the aforementioned implementation wraps a single cache bin, and each bin has a machine name, so the service name will be in the following format--cache.[bin]. This means that for each cache bin, we have a separate service.

The static shorthand for getting this service looks like this:

$cache = \Drupal::cache();

This will return the default bin represented by a CacheBackendInterface implementation. If we want to request a specific bin, we pass the name as an argument:

$cache = \Drupal::cache('render');

This will return the render cache bin.

And of course, if we need to inject a cache bin wrapper somewhere, we simply use the service machine name in the format I mentioned before.

Even though we have a separate service for each cache bin, they all basically do the same thing, and that is use the CacheFactory to instantiate the right type of cache backend for that bin. Individual cache backends can be registered and set as default either globally or for specific bins.

As I mentioned at the beginning of the chapter, the default cache backend in Drupal--the one this factory will instantiate for all the bins--is the DatabaseBackend. Each bin is represented by a database table. This is similar in concept to what we had in Drupal 7.

Now that we know how to load the cache backend service, lets see how we can use it to read and cache things. When it comes to this, your number one reference is the CacheBackendInterface, which documents all the methods. However, since it does not reinforce return values, the examples we will see next are done with the database cache backend. They might differ from other cache backend implementations.

The first method we'll talk about is get(), which takes the ID of the cache entry we want to retrieve ($cid) and an optional $allow_invalidparameter. The first one is clear enough, but the second one is used in case we want to retrieve the entry even if it has expired or has been invalidated. This can be useful in those cases in which stale data is preferred over the recalculation costs of multiple concurrent requests.

$data = $cache->get('my_cache_entry_cid');

The resulting $data variable is a PHP standard class, which contains the data key (the data that has been cached) and all sorts of metadata about the cache entry-- expiration, creation timestamp, tags, valid status, and so on.

Of course, there is also a getMultiple() method, which you can use to retrieve multiple entries at once. More fun, though, is the set()method, which allows us to store something in the cache. There are four parameters to this method:

  • $cid : The cache ID that can be used to retrieve the entry.
  • $data : A serializable data structure like an array or object (or simple scalar value).
  • $expire : The UNIX timestamp after which this entry is considered invalid, or CacheBackendInterface::CACHE_PERMANENT to indicate that this entry is never invalid unless specifically invalidated. The latter is the default.
  • $tags : An array of cache tags that will be used to invalidate this entry if it depends on something else (cache metadata, basically).

So to use it, we would do something like this:

$cache->set('my_cache_entry_cid', 'my_value');

With this statement, we are creating a simple non-serialized cache entry into our chosen bin and which does not expire unless specifically invalidated (or deleted). Subsequent calls with the same cache ID will simply override the entry. If the cache value is an array or object, it will get serialized.

When it comes to deleting, there are two easy methods--delete() and deleteMultiple(), which take the $cid (or array of cache IDs, respectively) as arguments and remove the entries from the bin completely. If we want to delete all the items in the bin, we can use the deleteAll() method.

Instead of deleting, quite often it's a good idea to invalidate the entries. We’ll still be able to retrieve the data using the $allow_invalid parameter and can use the entry while the new one is being recalculated. This can be done almost exactly as deleting but using the following methods instead--invalidate(), invalidateMultiple(), and invalidateAll().

Okay, but what about those cache tags we can store with the entry? We already kind of know their purpose and that is to tag cache entries across multiple bins with certain data markers that can make them easy to invalidate when the data changes. Just like with render arrays. So, how can we do this?

Lets assume that we store the following cache entry as follows:

$cache->set('my_cache_entry_cid', 'my_value', CacheBackendInterface::CACHE_PERMANENT, ['node:10']);

We essentially make it dependent on changes to the Node with the ID of 10. This means that when that node changes, our entry (together with all other entries in all other bins that depend on it) becomes invalid. Simple as that.

But we can also have our own tags that make it depend on something custom of ours like a data value (which, as we discussed earlier in the chapter, should implement the CacheableDependencyInterface) or a process of some kind. In that case, we would also have to take care of invalidating all the cache entries that have our tag. The simplest way we can do this is statically, using the Cache class we've encountered earlier when merging metadata together:

Cache::invalidateTags(['my_custom_tag']);

This will invalidate all cache entries that are tagged with any of the tags passed in the array. Under the hood, this method uses a static call to the cache invalidator service, so whenever possible, it's best to actually inject that service--cache_tags.invalidator.