Table of Contents for
Intermediate C Programming

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Intermediate C Programming by Yung-Hsiang Lu Published by CRC Press, 2015
  1. Front Cover
  2. Contents (1/2)
  3. Contents (2/2)
  4. List of Figures (1/2)
  5. List of Figures (2/2)
  6. List of Tables
  7. Foreword
  8. Preface
  9. Author, Reviewers, and Artist
  10. Rules in Software Development
  11. Source Code
  12. I. Computer Storage: Memory and File
  13. 1. Program Execution (1/2)
  14. 1. Program Execution (2/2)
  15. 2. Stack Memory (1/5)
  16. 2. Stack Memory (2/5)
  17. 2. Stack Memory (3/5)
  18. 2. Stack Memory (4/5)
  19. 2. Stack Memory (5/5)
  20. 3. Prevent, Detect, and Remove Bugs (1/2)
  21. 3. Prevent, Detect, and Remove Bugs (2/2)
  22. 4. Pointers (1/6)
  23. 4. Pointers (2/6)
  24. 4. Pointers (3/6)
  25. 4. Pointers (4/6)
  26. 4. Pointers (5/6)
  27. 4. Pointers (6/6)
  28. 5. Writing and Testing Programs (1/4)
  29. 5. Writing and Testing Programs (2/4)
  30. 5. Writing and Testing Programs (3/4)
  31. 5. Writing and Testing Programs (4/4)
  32. 6. Strings (1/3)
  33. 6. Strings (2/3)
  34. 6. Strings (3/3)
  35. 7. Programming Problems and Debugging (1/4)
  36. 7. Programming Problems and Debugging (2/4)
  37. 7. Programming Problems and Debugging (3/4)
  38. 7. Programming Problems and Debugging (4/4)
  39. 8. Heap Memory (1/3)
  40. 8. Heap Memory (2/3)
  41. 8. Heap Memory (3/3)
  42. 9. Programming Problems Using Heap Memory (1/4)
  43. 9. Programming Problems Using Heap Memory (2/4)
  44. 9. Programming Problems Using Heap Memory (3/4)
  45. 9. Programming Problems Using Heap Memory (4/4)
  46. 10. Reading and Writing Files (1/3)
  47. 10. Reading and Writing Files (2/3)
  48. 10. Reading and Writing Files (3/3)
  49. 11. Programming Problems Using File (1/2)
  50. 11. Programming Problems Using File (2/2)
  51. II. Recursion
  52. 12. Recursion (1/4)
  53. 12. Recursion (2/4)
  54. 12. Recursion (3/4)
  55. 12. Recursion (4/4)
  56. 13. Recursive C Functions (1/4)
  57. 13. Recursive C Functions (2/4)
  58. 13. Recursive C Functions (3/4)
  59. 13. Recursive C Functions (4/4)
  60. 14. Integer Partition (1/5)
  61. 14. Integer Partition (2/5)
  62. 14. Integer Partition (3/5)
  63. 14. Integer Partition (4/5)
  64. 14. Integer Partition (5/5)
  65. 15. Programming Problems Using Recursion (1/5)
  66. 15. Programming Problems Using Recursion (2/5)
  67. 15. Programming Problems Using Recursion (3/5)
  68. 15. Programming Problems Using Recursion (4/5)
  69. 15. Programming Problems Using Recursion (5/5)
  70. III. Structure
  71. 16. Programmer-Defined Data Types (1/6)
  72. 16. Programmer-Defined Data Types (2/6)
  73. 16. Programmer-Defined Data Types (3/6)
  74. 16. Programmer-Defined Data Types (4/6)
  75. 16. Programmer-Defined Data Types (5/6)
  76. 16. Programmer-Defined Data Types (6/6)
  77. 17. Programming Problems Using Structure (1/4)
  78. 17. Programming Problems Using Structure (2/4)
  79. 17. Programming Problems Using Structure (3/4)
  80. 17. Programming Problems Using Structure (4/4)
  81. 18. Linked Lists (1/3)
  82. 18. Linked Lists (2/3)
  83. 18. Linked Lists (3/3)
  84. 19. Programming Problems Using Linked List (1/2)
  85. 19. Programming Problems Using Linked List (2/2)
  86. 20. Binary Search Trees (1/4)
  87. 20. Binary Search Trees (2/4)
  88. 20. Binary Search Trees (3/4)
  89. 20. Binary Search Trees (4/4)
  90. 21. Parallel Programming Using Threads (1/5)
  91. 21. Parallel Programming Using Threads (2/5)
  92. 21. Parallel Programming Using Threads (3/5)
  93. 21. Parallel Programming Using Threads (4/5)
  94. 21. Parallel Programming Using Threads (5/5)
  95. IV. Applications
  96. 22. Finding the Exit of a Maze (1/5)
  97. 22. Finding the Exit of a Maze (2/5)
  98. 22. Finding the Exit of a Maze (3/5)
  99. 22. Finding the Exit of a Maze (4/5)
  100. 22. Finding the Exit of a Maze (5/5)
  101. 23. Image Processing (1/3)
  102. 23. Image Processing (2/3)
  103. 23. Image Processing (3/3)
  104. 24. Huffman Compression (1/10)
  105. 24. Huffman Compression (2/10)
  106. 24. Huffman Compression (3/10)
  107. 24. Huffman Compression (4/10)
  108. 24. Huffman Compression (5/10)
  109. 24. Huffman Compression (6/10)
  110. 24. Huffman Compression (7/10)
  111. 24. Huffman Compression (8/10)
  112. 24. Huffman Compression (9/10)
  113. 24. Huffman Compression (10/10)
  114. A. Linux
  115. B. Version Control
  116. C. Integrated Development Environments (IDE) (1/3)
  117. C. Integrated Development Environments (IDE) (2/3)
  118. C. Integrated Development Environments (IDE) (3/3)
140 Intermediate C Programming
means that no matter how fast a computer is, if an array is sufficiently large then selection
sort will behave poorly when compared to quick sort. Selection sort can be faster for small
arrays. This is because the logic of selection sort is simpler. What counts as “small” or
“large” may be empirically determined for a given computer.
(a)
(b)
FIGURE 9.1: (a) Execution time for selection sort and quick sort. (b) The ratio of the
execution time. Please note that both axes use a logarithmic scale.
To summarize, selection sort is an algorithm that selects the smallest value among the
remaining unsorted array elements in each iteration. C has a built-in function called qsort
and it can sort arrays of different types. It knows how to sort elements because programmers
tell qsort the size of each element and provide functions that compares the elements.