Table of Contents for
Linux Network Administrator's Guide, Second Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Linux Network Administrator's Guide, Second Edition by Terry Dawson Published by O'Reilly Media, Inc., 2000
  1. Cover
  2. Linux Network Administrator’s Guide, 2nd Edition
  3. Preface
  4. Sources of Information
  5. File System Standards
  6. Standard Linux Base
  7. About This Book
  8. The Official Printed Version
  9. Overview
  10. Conventions Used in This Book
  11. Submitting Changes
  12. Acknowledgments
  13. 1. Introduction to Networking
  14. TCP/IP Networks
  15. UUCP Networks
  16. Linux Networking
  17. Maintaining Your System
  18. 2. Issues of TCP/IP Networking
  19. IP Addresses
  20. Address Resolution
  21. IP Routing
  22. The Internet Control Message Protocol
  23. Resolving Host Names
  24. 3. Configuring the Networking Hardware
  25. A Tour of Linux Network Devices
  26. Ethernet Installation
  27. The PLIP Driver
  28. The PPP and SLIP Drivers
  29. Other Network Types
  30. 4. Configuring the Serial Hardware
  31. Introduction to Serial Devices
  32. Accessing Serial Devices
  33. Serial Hardware
  34. Using the Configuration Utilities
  35. Serial Devices and the login: Prompt
  36. 5. Configuring TCP/IP Networking
  37. Installing the Binaries
  38. Setting the Hostname
  39. Assigning IP Addresses
  40. Creating Subnets
  41. Writing hosts and networks Files
  42. Interface Configuration for IP
  43. All About ifconfig
  44. The netstat Command
  45. Checking the ARP Tables
  46. 6. Name Service and Resolver Configuration
  47. How DNS Works
  48. Running named
  49. 7. Serial Line IP
  50. SLIP Operation
  51. Dealing with Private IP Networks
  52. Using dip
  53. Running in Server Mode
  54. 8. The Point-to-Point Protocol
  55. Running pppd
  56. Using Options Files
  57. Using chat to Automate Dialing
  58. IP Configuration Options
  59. Link Control Options
  60. General Security Considerations
  61. Authentication with PPP
  62. Debugging Your PPP Setup
  63. More Advanced PPP Configurations
  64. 9. TCP/IP Firewall
  65. What Is a Firewall?
  66. What Is IP Filtering?
  67. Setting Up Linux for Firewalling
  68. Three Ways We Can Do Filtering
  69. Original IP Firewall (2.0 Kernels)
  70. IP Firewall Chains (2.2 Kernels)
  71. Netfilter and IP Tables (2.4 Kernels)
  72. TOS Bit Manipulation
  73. Testing a Firewall Configuration
  74. A Sample Firewall Configuration
  75. 10. IP Accounting
  76. Configuring IP Accounting
  77. Using IP Accounting Results
  78. Resetting the Counters
  79. Flushing the Ruleset
  80. Passive Collection of Accounting Data
  81. 11. IP Masquerade and Network Address Translation
  82. Configuring the Kernel for IP Masquerade
  83. Configuring IP Masquerade
  84. Handling Name Server Lookups
  85. More About Network Address Translation
  86. 12. Important Network Features
  87. The tcpd Access Control Facility
  88. The Services and Protocols Files
  89. Remote Procedure Call
  90. Configuring Remote Login and Execution
  91. 13. The Network Information System
  92. NIS Versus NIS+
  93. The Client Side of NIS
  94. Running an NIS Server
  95. NIS Server Security
  96. Setting Up an NIS Client with GNU libc
  97. Choosing the Right Maps
  98. Using the passwd and group Maps
  99. Using NIS with Shadow Support
  100. 14. The Network File System
  101. Mounting an NFS Volume
  102. The NFS Daemons
  103. The exports File
  104. Kernel-Based NFSv2 Server Support
  105. Kernel-Based NFSv3 Server Support
  106. 15. IPX and the NCP Filesystem
  107. IPX and Linux
  108. Configuring the Kernel for IPX and NCPFS
  109. Configuring IPX Interfaces
  110. Configuring an IPX Router
  111. Mounting a Remote NetWare Volume
  112. Exploring Some of the Other IPX Tools
  113. Printing to a NetWare Print Queue
  114. NetWare Server Emulation
  115. 16. Managing Taylor UUCP
  116. UUCP Configuration Files
  117. Controlling Access to UUCP Features
  118. Setting Up Your System for Dialing In
  119. UUCP Low-Level Protocols
  120. Troubleshooting
  121. Log Files and Debugging
  122. 17. Electronic Mail
  123. How Is Mail Delivered?
  124. Email Addresses
  125. How Does Mail Routing Work?
  126. Configuring elm
  127. 18. Sendmail
  128. Installing sendmail
  129. Overview of Configuration Files
  130. The sendmail.cf and sendmail.mc Files
  131. Generating the sendmail.cf File
  132. Interpreting and Writing Rewrite Rules
  133. Configuring sendmail Options
  134. Some Useful sendmail Configurations
  135. Testing Your Configuration
  136. Running sendmail
  137. Tips and Tricks
  138. 19. Getting Exim Up and Running
  139. If Your Mail Doesn’t Get Through
  140. Compiling Exim
  141. Mail Delivery Modes
  142. Miscellaneous config Options
  143. Message Routing and Delivery
  144. Protecting Against Mail Spam
  145. UUCP Setup
  146. 20. Netnews
  147. What Is Usenet, Anyway?
  148. How Does Usenet Handle News?
  149. 21. C News
  150. Installation
  151. The sys File
  152. The active File
  153. Article Batching
  154. Expiring News
  155. Miscellaneous Files
  156. Control Messages
  157. C News in an NFS Environment
  158. Maintenance Tools and Tasks
  159. 22. NNTP and the nntpd Daemon
  160. Installing the NNTP Server
  161. Restricting NNTP Access
  162. NNTP Authorization
  163. nntpd Interaction with C News
  164. 23. Internet News
  165. Newsreaders and INN
  166. Installing INN
  167. Configuring INN: the Basic Setup
  168. INN Configuration Files
  169. Running INN
  170. Managing INN: The ctlinnd Command
  171. 24. Newsreader Configuration
  172. trn Configuration
  173. nn Configuration
  174. A. Example Network: The Virtual Brewery
  175. B. Useful Cable Configurations
  176. A Serial NULL Modem Cable
  177. C. Linux Network Administrator’s Guide, Second Edition Copyright Information
  178. 1. Applicability and Definitions
  179. 2. Verbatim Copying
  180. 3. Copying in Quantity
  181. 4. Modifications
  182. 5. Combining Documents
  183. 6. Collections of Documents
  184. 7. Aggregation with Independent Works
  185. 8. Translation
  186. 9. Termination
  187. 10. Future Revisions of this License
  188. D. SAGE: The System Administrators Guild
  189. Index
  190. Colophon

IP Configuration Options

IPCP is used to negotiate a number of IP parameters at link configuration time. Usually, each peer sends an IPCP Configuration Request packet, indicating which values it wants to change from the defaults and the new value. Upon receipt, the remote end inspects each option in turn and either acknowledges or rejects it.

pppd gives you a lot of control over which IPCP options it will try to negotiate. You can tune it through various command-line options that we will discuss in this section.

Choosing IP Addresses

All IP interfaces require IP addresses assigned to them; a PPP device always has an IP address. The PPP suite of protocols provides a mechanism that allows the automatic assignment of IP addresses to PPP interfaces. It is possible for the PPP program at one end of a point-to-point link to assign an IP address for the remote end to use, or each may use its own.

Some PPP servers that handle a lot of client sites assign addresses dynamically; addresses are assigned to systems only when calling in and are reclaimed after they have logged off again. This allows the number of IP addresses required to be limited to the number of dialup lines. While limitation is convenient for managers of the PPP dialup server, it is often less convenient for users who are dialing in. We discussed the way that hostnames are mapped to IP addresses by use of a database in Chapter 6. In order for people to connect to your host, they must know your IP address or the hostname associated with it. If you are a user of a PPP service that assigns you an IP address dynamically, this knowledge is difficult without providing some means of allowing the DNS database to be updated after you are assigned an IP address. Such systems do exist, but we won’t cover them in detail here; instead, we will look at the more preferable approach, which involves you being able to use the same IP address each time you establish your network connection.[51]

In the previous example, we had pppd dial up c3po and establish an IP link. No provisions were taken to choose a particular IP address on either end of the link. Instead, we let pppd take its default action. It attempts to resolve the local hostname, vlager in our example, to an IP address, which it uses for the local end, while letting the remote machine, c3po, provide its own. PPP supports several alternatives to this arrangement.

To ask for particular addresses, you generally provide pppd with the following option:

                  local_addr:remote_addr

local_addr and remote_addr may be specified either in dotted quad notation or as hostnames.[52] This option makes pppd attempt to use the first address supplied as its own IP address, and the second as the peer’s. If the peer rejects either of the addresses during IPCP negotiation, no IP link will be established.[53]

If you are dialing in to a server and expect it to assign you an IP address, you should ensure that pppd does not attempt to negotiate one for itself. To do this, use the noipdefault option and leave the local_addr blank. The noipdefault option will stop pppd from trying to use the IP address associated with the hostname as the local address.

If you want to set only the local address but accept any address the peer uses, simply leave out the remote_addr part. To make vlager use the IP address 130.83.4.27 instead of its own, give it 130.83.4.27: on the command line. Similarly, to set the remote address only, leave the local_addr field blank. By default, pppd will then use the address associated with your hostname.

Routing Through a PPP Link

After setting up the network interface, pppd will usually set up a host route to its peer only. If the remote host is on a LAN, you certainly want to be able to connect to hosts “behind” your peer as well; in that case, a network route must be set up.

We have already seen that pppd can be asked to set the default route using the defaultroute option. This option is very useful if the PPP server you dialed up acts as your Internet gateway.

The reverse case, in which your system acts as a gateway for a single host, is also relatively easy to accomplish. For example, take some employee at the Virtual Brewery whose home machine is called oneshot. Let’s also assume that we’ve configured vlager as a dialin PPP server. If we’ve configured vlager to dynamically assign an IP address that belongs to the Brewery’s subnet, then we can use the proxyarp option with pppd, which will install a proxy ARP entry for oneshot. This automatically makes oneshot accessible from all hosts at the Brewery and the Winery.

However, things aren’t always that simple. Linking two local area networks usually requires adding a specific network route because these networks may have their own default routes. Besides, having both peers use the PPP link as the default route would generate a loop, through which packets to unknown destinations would ping-pong between the peers until their time to live expired.

Suppose the Virtual Brewery opens a branch in another city. The subsidiary runs an Ethernet of its own using the IP network number 172.16.3.0, which is subnet 3 of the Brewery’s class B network. The subsidiary wants to connect to the Brewery’s network via PPP to update customer databases. Again, vlager acts as the gateway for the brewery network and will support the PPP link; its peer at the new branch is called vbourbon and has an IP address of 172.16.3.1. This network is illustrated in Figure 1.2 in Appendix A.

When vbourbon connects to vlager, it makes the default route point to vlager as usual. On vlager, however, we will have only the point-to-point route to vbourbon and will have to specially configure a network route for subnet 3 that uses vbourbon as its gateway. We could do this manually using the route command by hand after the PPP link is established, but this is not a very practical solution. Fortunately, we can configure the route automatically by using a feature of pppd that we haven’t discussed yet—the ip-up command. This command is a shell script or program located in /etc/ppp that is executed by pppd after the PPP interface has been configured. When present, it is invoked with the following parameters:

ip-up iface 
                  device 
                  speed 
                  local_addr 
                  remote_addr

The following table summarizes the meaning of each of the arguments (in the first column, we show the number used by the shell script to refer to each argument):

ArgumentNamePurpose
$1 iface

The network interface used, e.g., ppp0

$2 device

The pathname of the serial device file used (/dev/tty, if stdin/stdout are used)

$3 speed

The speed of the serial device in bits per second

$4 local_addr

The IP address of the link’s remote end in dotted quad notation

$5 remote_addr

The IP address of the remote end of the link in dotted quad notation

In our case, the ip-up script may contain the following code fragment:[54]

#!/bin/sh
case $5 in
172.16.3.1)            # this is vbourbon
        route add -net 172.16.3.0 gw 172.16.3.1;;
...
esac
exit 0

Similarly, /etc/ppp/ip-down can be used to undo any actions of ip-up after the PPP link has been taken down again. So in our /etc/ppp/ip-down script we would have a route command that removed the route we created in the /etc/ppp/ip-up script.

However, the routing scheme is not yet complete. We have set up routing table entries on both PPP hosts, but so far none of the hosts on either network knows anything about the PPP link. This is not a big problem if all hosts at the subsidiary have their default route pointing at vbourbon, and all Brewery hosts route to vlager by default. If this is not the case, your only option is usually to use a routing daemon like gated. After creating the network route on vlager, the routing daemon broadcasts the new route to all hosts on the attached subnets.



[51] More information on two dynamic host assignment mechanisms can be found at http://www.dynip.com/and http://www.justlinux.com/dynamic_dns.html.

[52] Using hostnames in this option has consequences for CHAP authentication. Please refer to the Section 8.8 later in this chapter.

[53] The ipcp-accept-local and ipcp-accept-remote options instruct your pppd to accept the local and remote IP addresses being offered by the remote PPP, even if you’ve supplied some in your configuration. If these options are not configured, your pppd will reject any attempt to negotiate the IP addresses used.

[54] If we wanted to have routes for other sites created when they dial in, we’d add appropriate case statements to cover those in which the ... appears in the example.