Table of Contents for
Seven Databases in Seven Weeks, 2nd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Seven Databases in Seven Weeks, 2nd Edition by Jim Wilson Published by Pragmatic Bookshelf, 2018
  1. Title Page
  2. Seven Databases in Seven Weeks, Second Edition
  3. Seven Databases in Seven Weeks, Second Edition
  4. Seven Databases in Seven Weeks, Second Edition
  5. Seven Databases in Seven Weeks, Second Edition
  6.  Acknowledgments
  7.  Preface
  8. Why a NoSQL Book
  9. Why Seven Databases
  10. What’s in This Book
  11. What This Book Is Not
  12. Code Examples and Conventions
  13. Credits
  14. Online Resources
  15. 1. Introduction
  16. It Starts with a Question
  17. The Genres
  18. Onward and Upward
  19. 2. PostgreSQL
  20. That’s Post-greS-Q-L
  21. Day 1: Relations, CRUD, and Joins
  22. Day 2: Advanced Queries, Code, and Rules
  23. Day 3: Full Text and Multidimensions
  24. Wrap-Up
  25. 3. HBase
  26. Introducing HBase
  27. Day 1: CRUD and Table Administration
  28. Day 2: Working with Big Data
  29. Day 3: Taking It to the Cloud
  30. Wrap-Up
  31. 4. MongoDB
  32. Hu(mongo)us
  33. Day 1: CRUD and Nesting
  34. Day 2: Indexing, Aggregating, Mapreduce
  35. Day 3: Replica Sets, Sharding, GeoSpatial, and GridFS
  36. Wrap-Up
  37. 5. CouchDB
  38. Relaxing on the Couch
  39. Day 1: CRUD, Fauxton, and cURL Redux
  40. Day 2: Creating and Querying Views
  41. Day 3: Advanced Views, Changes API, and Replicating Data
  42. Wrap-Up
  43. 6. Neo4J
  44. Neo4j Is Whiteboard Friendly
  45. Day 1: Graphs, Cypher, and CRUD
  46. Day 2: REST, Indexes, and Algorithms
  47. Day 3: Distributed High Availability
  48. Wrap-Up
  49. 7. DynamoDB
  50. DynamoDB: The “Big Easy” of NoSQL
  51. Day 1: Let’s Go Shopping!
  52. Day 2: Building a Streaming Data Pipeline
  53. Day 3: Building an “Internet of Things” System Around DynamoDB
  54. Wrap-Up
  55. 8. Redis
  56. Data Structure Server Store
  57. Day 1: CRUD and Datatypes
  58. Day 2: Advanced Usage, Distribution
  59. Day 3: Playing with Other Databases
  60. Wrap-Up
  61. 9. Wrapping Up
  62. Genres Redux
  63. Making a Choice
  64. Where Do We Go from Here?
  65. A1. Database Overview Tables
  66. A2. The CAP Theorem
  67. Eventual Consistency
  68. CAP in the Wild
  69. The Latency Trade-Off
  70.  Bibliography
  71. Seven Databases in Seven Weeks, Second Edition

Chapter 5
CouchDB

Ratchet wrenches are light and convenient tools you carry around for a range of jobs, big and small. As with power drills, you can swap out variously sized bits like sockets or screws. Unlike a power drill that needs to be plugged into 120 volts of AC power, however, a wrench is happy to rest in your pocket and run on elbow grease. Apache CouchDB is like that. Able to scale down as well as up, it fits problem spaces of varying size and complexity with ease.

CouchDB is the quintessential JSON- and REST-based document-oriented database. First released all the way back in 2005, CouchDB was designed with the web in mind and all the innumerable flaws, faults, failures, and glitches that come with it. Consequently, CouchDB offers a robustness unmatched by most other databases. Whereas other systems tolerate occasional network drops, CouchDB thrives even when connectivity is only rarely available.

Like MongoDB, CouchDB stores documents—JSON objects consisting of key-value pairs where values may be any of several types, including other objects nested to any depth. What you don’t get, though, is ad hoc querying. Instead, indexed views produced by incremental mapreduce operations are the principal way you discover documents.